mirror of
				https://github.com/optim-enterprises-bv/nDPId.git
				synced 2025-10-31 10:17:47 +00:00 
			
		
		
		
	 c8ec505b9c
			
		
	
	c8ec505b9c
	
	
	
		
			
			* added build fix for Gitlab CI * added friendly C11 check * set required libnDPI versionto 4.7 (ArchLinux ndpi-git sets version to 4.7, which is not released yet) * reduced sklearn-random-forest memory consumption by adjusting min. sample leaf Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
		
			
				
	
	
		
			335 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			335 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import csv
 | |
| import joblib
 | |
| import matplotlib.pyplot
 | |
| import numpy
 | |
| import os
 | |
| import pandas
 | |
| import sklearn
 | |
| import sklearn.ensemble
 | |
| import sklearn.inspection
 | |
| import sys
 | |
| import time
 | |
| 
 | |
| sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
 | |
| sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
 | |
| sys.path.append(os.path.dirname(sys.argv[0]))
 | |
| sys.path.append(sys.base_prefix + '/share/nDPId')
 | |
| import nDPIsrvd
 | |
| from nDPIsrvd import nDPIsrvdSocket, TermColor
 | |
| 
 | |
| 
 | |
| N_DIRS = 0
 | |
| N_BINS = 0
 | |
| 
 | |
| ENABLE_FEATURE_IAT    = False
 | |
| ENABLE_FEATURE_PKTLEN = False
 | |
| ENABLE_FEATURE_DIRS   = True
 | |
| ENABLE_FEATURE_BINS   = True
 | |
| 
 | |
| def getFeatures(json):
 | |
|     return [json['flow_src_packets_processed'],
 | |
|             json['flow_dst_packets_processed'],
 | |
|             json['flow_src_tot_l4_payload_len'],
 | |
|             json['flow_dst_tot_l4_payload_len']]
 | |
| 
 | |
| def getFeaturesFromArray(json, expected_len=0):
 | |
|     if type(json) is str:
 | |
|         dirs = numpy.fromstring(json, sep=',', dtype=int)
 | |
|         dirs = numpy.asarray(dirs, dtype=int).tolist()
 | |
|     elif type(json) is list:
 | |
|         dirs = json
 | |
|     else:
 | |
|         raise TypeError('Invalid type: {}.'.format(type(json)))
 | |
| 
 | |
|     if expected_len > 0 and len(dirs) != expected_len:
 | |
|         raise RuntimeError('Invalid array length; Expected {}, Got {}.'.format(expected_len, len(dirs)))
 | |
| 
 | |
|     return dirs
 | |
| 
 | |
| def getRelevantFeaturesCSV(line):
 | |
|     ret = list()
 | |
|     ret.extend(getFeatures(line));
 | |
|     if ENABLE_FEATURE_IAT is True:
 | |
|         ret.extend(getFeaturesFromArray(line['iat_data'], N_DIRS - 1))
 | |
|     if ENABLE_FEATURE_PKTLEN is True:
 | |
|         ret.extend(getFeaturesFromArray(line['pktlen_data'], N_DIRS))
 | |
|     if ENABLE_FEATURE_DIRS is True:
 | |
|         ret.extend(getFeaturesFromArray(line['directions'], N_DIRS))
 | |
|     if ENABLE_FEATURE_BINS is True:
 | |
|         ret.extend(getFeaturesFromArray(line['bins_c_to_s'], N_BINS))
 | |
|         ret.extend(getFeaturesFromArray(line['bins_s_to_c'], N_BINS))
 | |
|     return [ret]
 | |
| 
 | |
| def getRelevantFeaturesJSON(line):
 | |
|     ret = list()
 | |
|     ret.extend(getFeatures(line))
 | |
|     if ENABLE_FEATURE_IAT is True:
 | |
|         ret.extend(getFeaturesFromArray(line['data_analysis']['iat']['data'], N_DIRS - 1))
 | |
|     if ENABLE_FEATURE_PKTLEN is True:
 | |
|         ret.extend(getFeaturesFromArray(line['data_analysis']['pktlen']['data'], N_DIRS))
 | |
|     if ENABLE_FEATURE_DIRS is True:
 | |
|         ret.extend(getFeaturesFromArray(line['data_analysis']['directions'], N_DIRS))
 | |
|     if ENABLE_FEATURE_BINS is True:
 | |
|         ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['c_to_s'], N_BINS))
 | |
|         ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['s_to_c'], N_BINS) )
 | |
|     return [ret]
 | |
| 
 | |
| def getRelevantFeatureNames():
 | |
|     names = list()
 | |
|     names.extend(['flow_src_packets_processed', 'flow_dst_packets_processed',
 | |
|                   'flow_src_tot_l4_payload_len', 'flow_dst_tot_l4_payload_len'])
 | |
|     if ENABLE_FEATURE_IAT is True:
 | |
|         for x in range(N_DIRS - 1):
 | |
|             names.append('iat_{}'.format(x))
 | |
|     if ENABLE_FEATURE_PKTLEN is True:
 | |
|         for x in range(N_DIRS):
 | |
|             names.append('pktlen_{}'.format(x))
 | |
|     if ENABLE_FEATURE_DIRS is True:
 | |
|         for x in range(N_DIRS):
 | |
|             names.append('dirs_{}'.format(x))
 | |
|     if ENABLE_FEATURE_BINS is True:
 | |
|         for x in range(N_BINS):
 | |
|             names.append('bins_c_to_s_{}'.format(x))
 | |
|         for x in range(N_BINS):
 | |
|             names.append('bins_s_to_c_{}'.format(x))
 | |
|     return names
 | |
| 
 | |
| def plotPermutatedImportance(model, X, y):
 | |
|     result = sklearn.inspection.permutation_importance(model, X, y, n_repeats=10, random_state=42, n_jobs=-1)
 | |
|     forest_importances = pandas.Series(result.importances_mean, index=getRelevantFeatureNames())
 | |
| 
 | |
|     fig, ax = matplotlib.pyplot.subplots()
 | |
|     forest_importances.plot.bar(yerr=result.importances_std, ax=ax)
 | |
|     ax.set_title("Feature importances using permutation on full model")
 | |
|     ax.set_ylabel("Mean accuracy decrease")
 | |
|     fig.tight_layout()
 | |
|     matplotlib.pyplot.show()
 | |
| 
 | |
| def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
 | |
|     if 'flow_event_name' not in json_dict:
 | |
|         return True
 | |
|     if json_dict['flow_event_name'] != 'analyse':
 | |
|         return True
 | |
| 
 | |
|     if 'ndpi' not in json_dict:
 | |
|         return True
 | |
|     if 'proto' not in json_dict['ndpi']:
 | |
|         return True
 | |
| 
 | |
|     #print(json_dict)
 | |
| 
 | |
|     model, proto_class, disable_colors = global_user_data
 | |
| 
 | |
|     try:
 | |
|         X = getRelevantFeaturesJSON(json_dict)
 | |
|         y = model.predict(X)
 | |
|         s = model.score(X, y)
 | |
|         p = model.predict_log_proba(X)
 | |
| 
 | |
|         if y[0] <= 0:
 | |
|             y_text = 'n/a'
 | |
|         else:
 | |
|             y_text = proto_class[y[0] - 1]
 | |
| 
 | |
|         color_start = ''
 | |
|         color_end = ''
 | |
|         pred_failed = False
 | |
|         if disable_colors is False:
 | |
|             if json_dict['ndpi']['proto'].lower().startswith(y_text) is True:
 | |
|                 color_start = TermColor.BOLD
 | |
|                 color_end = TermColor.END
 | |
|             elif y_text not in proto_class and \
 | |
|                  json_dict['ndpi']['proto'].lower() not in proto_class:
 | |
|                 pass
 | |
|             else:
 | |
|                 pred_failed = True
 | |
|                 color_start = TermColor.FAIL + TermColor.BOLD + TermColor.BLINK
 | |
|                 color_end = TermColor.END
 | |
| 
 | |
|         probs = str()
 | |
|         for i in range(len(p[0])):
 | |
|             if json_dict['ndpi']['proto'].lower().startswith(proto_class[i - 1]) and disable_colors is False:
 | |
|                 probs += '{}{:>2.1f}{}, '.format(TermColor.BOLD + TermColor.BLINK if pred_failed is True else '',
 | |
|                                                p[0][i], TermColor.END)
 | |
|             elif i == y[0]:
 | |
|                 probs += '{}{:>2.1f}{}, '.format(color_start, p[0][i], color_end)
 | |
|             else:
 | |
|                 probs += '{:>2.1f}, '.format(p[0][i])
 | |
|         probs = probs[:-2]
 | |
| 
 | |
|         print('DPI Engine detected: {}{:>24}{}, Predicted: {}{:>24}{}, Score: {}, Probabilities: {}'.format(
 | |
|               color_start, json_dict['ndpi']['proto'].lower(), color_end,
 | |
|               color_start, y_text, color_end, s, probs))
 | |
|     except Exception as err:
 | |
|         print('Got exception `{}\'\nfor json: {}'.format(err, json_dict))
 | |
| 
 | |
|     return True
 | |
| 
 | |
| def isProtoClass(proto_class, line):
 | |
|     if type(proto_class) != list or type(line) != str:
 | |
|         raise TypeError('Invalid type: {}/{}.'.format(type(proto_class), type(line)))
 | |
| 
 | |
|     s = line.lower()
 | |
| 
 | |
|     for x in range(len(proto_class)):
 | |
|         if s.startswith(proto_class[x].lower()) is True:
 | |
|             return x + 1
 | |
| 
 | |
|     return 0
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     argparser = nDPIsrvd.defaultArgumentParser()
 | |
|     argparser.add_argument('--load-model', action='store',
 | |
|                            help='Load a pre-trained model file.')
 | |
|     argparser.add_argument('--save-model', action='store',
 | |
|                            help='Save the trained model to a file.')
 | |
|     argparser.add_argument('--csv', action='store',
 | |
|                            help='Input CSV file generated with nDPIsrvd-analysed.')
 | |
|     argparser.add_argument('--proto-class', action='append', required=False,
 | |
|                            help='nDPId protocol class of interest used for training and prediction. ' +
 | |
|                                 'Can be specified multiple times. Example: tls.youtube')
 | |
|     argparser.add_argument('--generate-feature-importance', action='store_true',
 | |
|                            help='Generates the permutated feature importance with matplotlib.')
 | |
|     argparser.add_argument('--enable-iat', action='store_true', default=None,
 | |
|                            help='Enable packet (I)nter (A)rrival (T)ime for learning and prediction.')
 | |
|     argparser.add_argument('--enable-pktlen', action='store_true', default=None,
 | |
|                            help='Enable layer 4 packet lengths for learning and prediction.')
 | |
|     argparser.add_argument('--disable-dirs', action='store_true', default=None,
 | |
|                            help='Disable packet directions for learning and prediction.')
 | |
|     argparser.add_argument('--disable-bins', action='store_true', default=None,
 | |
|                            help='Disable packet length distribution for learning and prediction.')
 | |
|     argparser.add_argument('--disable-colors', action='store_true', default=False,
 | |
|                            help='Disable any coloring.')
 | |
|     argparser.add_argument('--sklearn-jobs', action='store', type=int, default=1,
 | |
|                            help='Number of sklearn processes during training.')
 | |
|     argparser.add_argument('--sklearn-estimators', action='store', type=int, default=1000,
 | |
|                            help='Number of trees in the forest.')
 | |
|     argparser.add_argument('--sklearn-min-samples-leaf', action='store', type=int, default=0.0001,
 | |
|                            help='The minimum number of samples required to be at a leaf node.')
 | |
|     argparser.add_argument('--sklearn-class-weight', default='balanced', const='balanced', nargs='?',
 | |
|                            choices=['balanced', 'balanced_subsample'],
 | |
|                            help='Weights associated with the protocol classes.')
 | |
|     argparser.add_argument('--sklearn-max-features', default='sqrt', const='sqrt', nargs='?',
 | |
|                            choices=['sqrt', 'log2'],
 | |
|                            help='The number of features to consider when looking for the best split.')
 | |
|     argparser.add_argument('--sklearn-verbosity', action='store', type=int, default=0,
 | |
|                            help='Controls the verbosity of sklearn\'s random forest classifier.')
 | |
|     args = argparser.parse_args()
 | |
|     address = nDPIsrvd.validateAddress(args)
 | |
| 
 | |
|     if args.csv is None and args.load_model is None:
 | |
|         sys.stderr.write('{}: Either `--csv` or `--load-model` required!\n'.format(sys.argv[0]))
 | |
|         sys.exit(1)
 | |
| 
 | |
|     if args.csv is None and args.generate_feature_importance is True:
 | |
|         sys.stderr.write('{}: `--generate-feature-importance` requires `--csv`.\n'.format(sys.argv[0]))
 | |
|         sys.exit(1)
 | |
| 
 | |
|     if args.proto_class is None or len(args.proto_class) == 0:
 | |
|         if args.csv is None and args.load_model is None:
 | |
|             sys.stderr.write('{}: `--proto-class` missing, no useful classification can be performed.\n'.format(sys.argv[0]))
 | |
|     else:
 | |
|         if args.load_model is not None:
 | |
|             sys.stderr.write('{}: `--proto-class` set, but you want to load an existing model.\n'.format(sys.argv[0]))
 | |
|             sys.exit(1)
 | |
| 
 | |
|     if args.load_model is not None:
 | |
|         if args.enable_iat is not None:
 | |
|             sys.stderr.write('{}: `--enable-iat` set, but you want to load an existing model.\n'.format(sys.argv[0]))
 | |
|             sys.exit(1)
 | |
|         if args.enable_pktlen is not None:
 | |
|             sys.stderr.write('{}: `--enable-pktlen` set, but you want to load an existing model.\n'.format(sys.argv[0]))
 | |
|             sys.exit(1)
 | |
|         if args.disable_dirs is not None:
 | |
|             sys.stderr.write('{}: `--disable-dirs` set, but you want to load an existing model.\n'.format(sys.argv[0]))
 | |
|             sys.exit(1)
 | |
|         if args.disable_bins is not None:
 | |
|             sys.stderr.write('{}: `--disable-bins` set, but you want to load an existing model.\n'.format(sys.argv[0]))
 | |
|             sys.exit(1)
 | |
| 
 | |
|     ENABLE_FEATURE_IAT    = args.enable_iat if args.enable_iat is not None else ENABLE_FEATURE_IAT
 | |
|     ENABLE_FEATURE_PKTLEN = args.enable_pktlen if args.enable_pktlen is not None else ENABLE_FEATURE_PKTLEN
 | |
|     ENABLE_FEATURE_DIRS   = args.disable_dirs if args.disable_dirs is not None else ENABLE_FEATURE_DIRS
 | |
|     ENABLE_FEATURE_BINS   = args.disable_bins if args.disable_bins is not None else ENABLE_FEATURE_BINS
 | |
| 
 | |
|     numpy.set_printoptions(formatter={'float_kind': "{:.1f}".format}, sign=' ')
 | |
|     numpy.seterr(divide = 'ignore')
 | |
| 
 | |
|     if args.proto_class is not None:
 | |
|         for i in range(len(args.proto_class)):
 | |
|             args.proto_class[i] = args.proto_class[i].lower()
 | |
| 
 | |
|     if args.load_model is not None:
 | |
|         sys.stderr.write('Loading model from {}\n'.format(args.load_model))
 | |
|         model, options = joblib.load(args.load_model)
 | |
|         ENABLE_FEATURE_IAT, ENABLE_FEATURE_PKTLEN, ENABLE_FEATURE_DIRS, ENABLE_FEATURE_BINS, args.proto_class = options
 | |
| 
 | |
|     if args.csv is not None:
 | |
|         sys.stderr.write('Learning via CSV..\n')
 | |
|         with open(args.csv, newline='\n') as csvfile:
 | |
|             reader = csv.DictReader(csvfile, delimiter=',', quotechar='"')
 | |
|             X = list()
 | |
|             y = list()
 | |
| 
 | |
|             for line in reader:
 | |
|                 N_DIRS = len(getFeaturesFromArray(line['directions']))
 | |
|                 N_BINS = len(getFeaturesFromArray(line['bins_c_to_s']))
 | |
|                 break
 | |
| 
 | |
|             for line in reader:
 | |
|                 try:
 | |
|                     X += getRelevantFeaturesCSV(line)
 | |
|                 except RuntimeError as err:
 | |
|                     print('Runtime Error: `{}\'\non line {}: {}'.format(err, reader.line_num - 1, line))
 | |
|                     continue
 | |
|                 except TypeError as err:
 | |
|                     print('Type Error: `{}\'\non line {}: {}'.format(err, reader.line_num - 1, line))
 | |
|                     continue
 | |
| 
 | |
|                 try:
 | |
|                     y += [isProtoClass(args.proto_class, line['proto'])]
 | |
|                 except TypeError as err:
 | |
|                     X.pop()
 | |
|                     print('Type Error: `{}\'\non line {}: {}'.format(err, reader.line_num - 1, line))
 | |
|                     continue
 | |
| 
 | |
|             sys.stderr.write('CSV data set contains {} entries.\n'.format(len(X)))
 | |
| 
 | |
|             if args.load_model is None:
 | |
|                 model = sklearn.ensemble.RandomForestClassifier(bootstrap=False,
 | |
|                                                                 class_weight     = args.sklearn_class_weight,
 | |
|                                                                 n_jobs           = args.sklearn_jobs,
 | |
|                                                                 n_estimators     = args.sklearn_estimators,
 | |
|                                                                 verbose          = args.sklearn_verbosity,
 | |
|                                                                 min_samples_leaf = args.sklearn_min_samples_leaf,
 | |
|                                                                 max_features     = args.sklearn_max_features
 | |
|                                                                )
 | |
|                 options = (ENABLE_FEATURE_IAT, ENABLE_FEATURE_PKTLEN, ENABLE_FEATURE_DIRS, ENABLE_FEATURE_BINS, args.proto_class)
 | |
|             sys.stderr.write('Training model..\n')
 | |
|             model.fit(X, y)
 | |
| 
 | |
|             if args.generate_feature_importance is True:
 | |
|                 sys.stderr.write('Generating feature importance .. this may take some time\n')
 | |
|                 plotPermutatedImportance(model, X, y)
 | |
| 
 | |
|     if args.save_model is not None:
 | |
|         sys.stderr.write('Saving model to {}\n'.format(args.save_model))
 | |
|         joblib.dump([model, options], args.save_model)
 | |
| 
 | |
|     print('ENABLE_FEATURE_PKTLEN: {}'.format(ENABLE_FEATURE_PKTLEN))
 | |
|     print('ENABLE_FEATURE_BINS..: {}'.format(ENABLE_FEATURE_BINS))
 | |
|     print('ENABLE_FEATURE_DIRS..: {}'.format(ENABLE_FEATURE_DIRS))
 | |
|     print('ENABLE_FEATURE_IAT...: {}'.format(ENABLE_FEATURE_IAT))
 | |
|     print('Map[*] -> [0]')
 | |
|     for x in range(len(args.proto_class)):
 | |
|         print('Map["{}"] -> [{}]'.format(args.proto_class[x], x + 1))
 | |
| 
 | |
|     sys.stderr.write('Predicting realtime traffic..\n')
 | |
|     sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
 | |
|     sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
 | |
|     nsock = nDPIsrvdSocket()
 | |
|     nsock.connect(address)
 | |
|     nsock.loop(onJsonLineRecvd, None, (model, args.proto_class, args.disable_colors))
 |