mirror of
				https://github.com/optim-enterprises-bv/nDPId.git
				synced 2025-11-04 04:07:51 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			381 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import base64
 | 
						|
import binascii
 | 
						|
import datetime as dt
 | 
						|
import math
 | 
						|
import matplotlib.animation as ani
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
import multiprocessing as mp
 | 
						|
import numpy as np
 | 
						|
import os
 | 
						|
import queue
 | 
						|
import sys
 | 
						|
 | 
						|
import tensorflow as tf
 | 
						|
from tensorflow.keras import models, layers, preprocessing
 | 
						|
from tensorflow.keras.layers import Embedding, Masking, Input, Dense
 | 
						|
from tensorflow.keras.models import Model
 | 
						|
from tensorflow.keras.utils import plot_model
 | 
						|
from tensorflow.keras.losses import MeanSquaredError, KLDivergence
 | 
						|
from tensorflow.keras.optimizers import Adam, SGD
 | 
						|
from tensorflow.keras.callbacks import TensorBoard, EarlyStopping
 | 
						|
 | 
						|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
 | 
						|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
 | 
						|
sys.path.append(os.path.dirname(sys.argv[0]))
 | 
						|
sys.path.append(sys.base_prefix + '/share/nDPId')
 | 
						|
import nDPIsrvd
 | 
						|
from nDPIsrvd import nDPIsrvdSocket, TermColor
 | 
						|
 | 
						|
INPUT_SIZE    = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
 | 
						|
LATENT_SIZE   = 16
 | 
						|
TRAINING_SIZE = 8192
 | 
						|
EPOCH_COUNT   = 50
 | 
						|
BATCH_SIZE    = 512
 | 
						|
LEARNING_RATE = 0.0000001
 | 
						|
ES_PATIENCE   = 10
 | 
						|
PLOT          = False
 | 
						|
PLOT_HISTORY  = 100
 | 
						|
TENSORBOARD   = False
 | 
						|
TB_LOGPATH    = 'logs/' + dt.datetime.now().strftime("%Y%m%d-%H%M%S")
 | 
						|
VAE_USE_KLDIV = False
 | 
						|
VAE_USE_SGD   = False
 | 
						|
 | 
						|
def generate_autoencoder():
 | 
						|
    # TODO: The current model does handle *each* packet separatly.
 | 
						|
    #       But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other.
 | 
						|
    #       The accuracy may (or may not) improve significantly, but some of changes in the code are required.
 | 
						|
    input_i = Input(shape=(), name='input_i')
 | 
						|
    input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
 | 
						|
    masked_e = Masking(mask_value=0.0, name='masked_e')(input_e)
 | 
						|
    encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e)
 | 
						|
    encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1)
 | 
						|
    encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2)
 | 
						|
    encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3)
 | 
						|
    encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4)
 | 
						|
    encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5)
 | 
						|
    encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6)
 | 
						|
    latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7)
 | 
						|
 | 
						|
    input_l = Input(shape=(LATENT_SIZE), name='input_l')
 | 
						|
    decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
 | 
						|
    decoder_h2 = Dense(64, activation='relu', name='decoder_h2')(decoder_h1)
 | 
						|
    decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
 | 
						|
    decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
 | 
						|
    decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
 | 
						|
    decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5)
 | 
						|
    decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6)
 | 
						|
    output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7)
 | 
						|
 | 
						|
    encoder = Model(input_e, latent, name='encoder')
 | 
						|
    decoder = Model(input_l, output_i, name='decoder')
 | 
						|
    return KLDivergence() if VAE_USE_KLDIV else MeanSquaredError(), \
 | 
						|
           SGD() if VAE_USE_SGD else Adam(learning_rate=LEARNING_RATE), \
 | 
						|
           Model(input_e, decoder(encoder(input_e)), name='VAE')
 | 
						|
 | 
						|
def compile_autoencoder():
 | 
						|
    loss, optimizer, autoencoder = generate_autoencoder()
 | 
						|
    autoencoder.compile(loss=loss, optimizer=optimizer, metrics=[])
 | 
						|
    return autoencoder
 | 
						|
 | 
						|
def get_autoencoder(load_from_file=None):
 | 
						|
    if load_from_file is None:
 | 
						|
        autoencoder = compile_autoencoder()
 | 
						|
    else:
 | 
						|
        autoencoder = models.load_model(load_from_file)
 | 
						|
 | 
						|
    encoder_submodel = autoencoder.layers[1]
 | 
						|
    decoder_submodel = autoencoder.layers[2]
 | 
						|
    return encoder_submodel, decoder_submodel, autoencoder
 | 
						|
 | 
						|
def on_json_line(json_dict, instance, current_flow, global_user_data):
 | 
						|
    if 'packet_event_name' not in json_dict:
 | 
						|
        return True
 | 
						|
 | 
						|
    if json_dict['packet_event_name'] != 'packet' and \
 | 
						|
        json_dict['packet_event_name'] != 'packet-flow':
 | 
						|
        return True
 | 
						|
 | 
						|
    shutdown_event, training_event, padded_pkts, print_dots = global_user_data
 | 
						|
    if shutdown_event.is_set():
 | 
						|
        return False
 | 
						|
 | 
						|
    try:
 | 
						|
        buf = base64.b64decode(json_dict['pkt'], validate=True)
 | 
						|
    except binascii.Error as err:
 | 
						|
        sys.stderr.write('\nBase64 Exception: {}\n'.format(str(err)))
 | 
						|
        sys.stderr.write('Affected JSON: {}\n'.format(str(json_dict)))
 | 
						|
        sys.stderr.flush()
 | 
						|
        return False
 | 
						|
 | 
						|
    # Generate decimal byte buffer with valus from 0-255
 | 
						|
    int_buf = []
 | 
						|
    for v in buf:
 | 
						|
        int_buf.append(int(v))
 | 
						|
 | 
						|
    mat = np.array([int_buf], dtype='float64')
 | 
						|
 | 
						|
    # Normalize the values
 | 
						|
    mat = mat.astype('float64') / 255.0
 | 
						|
 | 
						|
    # Mean removal
 | 
						|
    matmean = np.mean(mat, dtype='float64')
 | 
						|
    mat -= matmean
 | 
						|
 | 
						|
    # Pad resulting matrice
 | 
						|
    buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post', dtype='float64')
 | 
						|
    padded_pkts.put(buf[0])
 | 
						|
 | 
						|
    #print(list(buf[0]))
 | 
						|
 | 
						|
    if not training_event.is_set():
 | 
						|
        sys.stdout.write('.' * print_dots)
 | 
						|
        sys.stdout.flush()
 | 
						|
        print_dots = 1
 | 
						|
    else:
 | 
						|
        print_dots += 1
 | 
						|
 | 
						|
    return True
 | 
						|
 | 
						|
def ndpisrvd_worker(address, shared_shutdown_event, shared_training_event, shared_packet_list):
 | 
						|
    nsock = nDPIsrvdSocket()
 | 
						|
 | 
						|
    try:
 | 
						|
        nsock.connect(address)
 | 
						|
        print_dots = 1
 | 
						|
        nsock.loop(on_json_line, None, (shared_shutdown_event, shared_training_event, shared_packet_list, print_dots))
 | 
						|
    except nDPIsrvd.SocketConnectionBroken as err:
 | 
						|
        sys.stderr.write('\nnDPIsrvd-Worker Socket Error: {}\n'.format(err))
 | 
						|
    except KeyboardInterrupt:
 | 
						|
        sys.stderr.write('\n')
 | 
						|
    except Exception as err:
 | 
						|
        sys.stderr.write('\nnDPIsrvd-Worker Exception: {}\n'.format(str(err)))
 | 
						|
    sys.stderr.flush()
 | 
						|
 | 
						|
    shared_shutdown_event.set()
 | 
						|
 | 
						|
def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue):
 | 
						|
    shared_training_event.set()
 | 
						|
    try:
 | 
						|
        encoder, _, autoencoder = get_autoencoder(load_model)
 | 
						|
    except Exception as err:
 | 
						|
        sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err)))
 | 
						|
        sys.stderr.flush()
 | 
						|
        encoder, _, autoencoder = get_autoencoder()
 | 
						|
    autoencoder.summary()
 | 
						|
    tensorboard = TensorBoard(log_dir=TB_LOGPATH, histogram_freq=1)
 | 
						|
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=ES_PATIENCE, restore_best_weights=True, start_from_epoch=0, verbose=0, mode='auto')
 | 
						|
    shared_training_event.clear()
 | 
						|
 | 
						|
    try:
 | 
						|
        packets = list()
 | 
						|
        while not shared_shutdown_event.is_set():
 | 
						|
            try:
 | 
						|
                packet = shared_packet_queue.get(timeout=1)
 | 
						|
            except queue.Empty:
 | 
						|
                packet = None
 | 
						|
 | 
						|
            if packet is None:
 | 
						|
                continue
 | 
						|
 | 
						|
            packets.append(packet)
 | 
						|
            if len(packets) % TRAINING_SIZE == 0:
 | 
						|
                shared_training_event.set()
 | 
						|
                print('\nGot {} packets, training..'.format(len(packets)))
 | 
						|
                tmp = np.array(packets)
 | 
						|
                history = autoencoder.fit(
 | 
						|
                                          tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
 | 
						|
                                          validation_split=0.2,
 | 
						|
                                          shuffle=True,
 | 
						|
                                          callbacks=[tensorboard, early_stopping]
 | 
						|
                                         )
 | 
						|
                reconstructed_data = autoencoder.predict(tmp)
 | 
						|
                mse = np.mean(np.square(tmp - reconstructed_data))
 | 
						|
                reconstruction_accuracy = (1.0 / mse)
 | 
						|
                encoded_data = encoder.predict(tmp)
 | 
						|
                latent_activations = encoder.predict(tmp)
 | 
						|
                shared_plot_queue.put((reconstruction_accuracy, history.history['val_loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
 | 
						|
                packets.clear()
 | 
						|
                shared_training_event.clear()
 | 
						|
    except KeyboardInterrupt:
 | 
						|
        sys.stderr.write('\n')
 | 
						|
    except Exception as err:
 | 
						|
        if len(str(err)) == 0:
 | 
						|
            err = 'Unknown'
 | 
						|
        sys.stderr.write('\nKeras-Worker Exception: {}\n'.format(str(err)))
 | 
						|
    sys.stderr.flush()
 | 
						|
 | 
						|
    if save_model is not None:
 | 
						|
        sys.stderr.write('Saving model to {}\n'.format(save_model))
 | 
						|
        sys.stderr.flush()
 | 
						|
        autoencoder.save(save_model)
 | 
						|
 | 
						|
    try:
 | 
						|
        shared_shutdown_event.set()
 | 
						|
    except Exception:
 | 
						|
        pass
 | 
						|
 | 
						|
def plot_animate(i, shared_plot_queue, ax, xs, ys):
 | 
						|
    if not shared_plot_queue.empty():
 | 
						|
        accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1)
 | 
						|
        epochs = len(loss)
 | 
						|
        loss_mean = sum(loss) / epochs
 | 
						|
    else:
 | 
						|
        return
 | 
						|
 | 
						|
    (ax1, ax2, ax3, ax4) = ax
 | 
						|
    (ys1, ys2, ys3, ys4) = ys
 | 
						|
 | 
						|
    if len(xs) == 0:
 | 
						|
        xs.append(epochs)
 | 
						|
    else:
 | 
						|
        xs.append(xs[-1] + epochs)
 | 
						|
    ys1.append(accuracy)
 | 
						|
    ys2.append(loss_mean)
 | 
						|
 | 
						|
    xs = xs[-PLOT_HISTORY:]
 | 
						|
    ys1 = ys1[-PLOT_HISTORY:]
 | 
						|
    ys2 = ys2[-PLOT_HISTORY:]
 | 
						|
 | 
						|
    ax1.clear()
 | 
						|
    ax1.plot(xs, ys1, '-')
 | 
						|
    ax2.clear()
 | 
						|
    ax2.plot(xs, ys2, '-')
 | 
						|
    ax3.clear()
 | 
						|
    ax3.scatter(encoded_data0, encoded_data1, marker='.')
 | 
						|
    ax4.clear()
 | 
						|
    ax4.imshow(latent_activations, cmap='viridis', aspect='auto')
 | 
						|
 | 
						|
    ax1.set_xlabel('Epoch Count')
 | 
						|
    ax1.set_ylabel('Accuracy')
 | 
						|
    ax2.set_xlabel('Epoch Count')
 | 
						|
    ax2.set_ylabel('Validation Loss')
 | 
						|
    ax3.set_title('Latent Space')
 | 
						|
    ax4.set_title('Latent Space Heatmap')
 | 
						|
    ax4.set_xlabel('Latent Dimensions')
 | 
						|
    ax4.set_ylabel('Datapoints')
 | 
						|
 | 
						|
def plot_worker(shared_shutdown_event, shared_plot_queue):
 | 
						|
    try:
 | 
						|
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
 | 
						|
        fig.tight_layout()
 | 
						|
        ax1.set_xlabel('Epoch Count')
 | 
						|
        ax1.set_ylabel('Accuracy')
 | 
						|
        ax2.set_xlabel('Epoch Count')
 | 
						|
        ax2.set_ylabel('Validation Loss')
 | 
						|
        ax3.set_title('Latent Space')
 | 
						|
        ax4.set_title('Latent Space Heatmap')
 | 
						|
        ax4.set_xlabel('Latent Dimensions')
 | 
						|
        ax4.set_ylabel('Datapoints')
 | 
						|
        xs = []
 | 
						|
        ys1 = []
 | 
						|
        ys2 = []
 | 
						|
        ys3 = []
 | 
						|
        ys4 = []
 | 
						|
        ani.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
 | 
						|
        plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
 | 
						|
        plt.margins(x=0, y=0)
 | 
						|
        plt.show()
 | 
						|
    except Exception as err:
 | 
						|
        sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
 | 
						|
        sys.stderr.flush()
 | 
						|
        shared_shutdown_event.set()
 | 
						|
        return
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    sys.stderr.write('\b\n***************\n')
 | 
						|
    sys.stderr.write('*** WARNING ***\n')
 | 
						|
    sys.stderr.write('***************\n')
 | 
						|
    sys.stderr.write('\nThis is an unmature Autoencoder example.\n')
 | 
						|
    sys.stderr.write('Please do not rely on any of it\'s output!\n\n')
 | 
						|
 | 
						|
    argparser = nDPIsrvd.defaultArgumentParser()
 | 
						|
    argparser.add_argument('--load-model', action='store',
 | 
						|
                           help='Load a pre-trained model file.')
 | 
						|
    argparser.add_argument('--save-model', action='store',
 | 
						|
                           help='Save the trained model to a file.')
 | 
						|
    argparser.add_argument('--training-size', action='store', default=TRAINING_SIZE,
 | 
						|
                           help='Set the amount of captured packets required to start the training phase.')
 | 
						|
    argparser.add_argument('--batch-size', action='store', default=BATCH_SIZE,
 | 
						|
                           help='Set the batch size used for the training phase.')
 | 
						|
    argparser.add_argument('--learning-rate', action='store', default=LEARNING_RATE,
 | 
						|
                           help='Set the (initial) learning rate for the optimizer.')
 | 
						|
    argparser.add_argument('--plot', action='store_true', default=PLOT,
 | 
						|
                           help='Show some model metrics using pyplot.')
 | 
						|
    argparser.add_argument('--plot-history', action='store', default=PLOT_HISTORY,
 | 
						|
                           help='Set the history size of Line plots. Requires --plot')
 | 
						|
    argparser.add_argument('--tensorboard', action='store_true', default=TENSORBOARD,
 | 
						|
                           help='Enable TensorBoard compatible logging callback.')
 | 
						|
    argparser.add_argument('--tensorboard-logpath', action='store', default=TB_LOGPATH,
 | 
						|
                           help='TensorBoard logging path.')
 | 
						|
    argparser.add_argument('--use-sgd', action='store_true', default=VAE_USE_SGD,
 | 
						|
                           help='Use SGD optimizer instead of Adam.')
 | 
						|
    argparser.add_argument('--use-kldiv', action='store_true', default=VAE_USE_KLDIV,
 | 
						|
                           help='Use Kullback-Leibler loss function instead of Mean-Squared-Error.')
 | 
						|
    argparser.add_argument('--patience', action='store', default=ES_PATIENCE,
 | 
						|
                           help='Epoch value for EarlyStopping. This value forces VAE fitting to if no improvment achieved.')
 | 
						|
    args = argparser.parse_args()
 | 
						|
    address = nDPIsrvd.validateAddress(args)
 | 
						|
 | 
						|
    LEARNING_RATE = args.learning_rate
 | 
						|
    TRAINING_SIZE = args.training_size
 | 
						|
    BATCH_SIZE    = args.batch_size
 | 
						|
    PLOT          = args.plot
 | 
						|
    PLOT_HISTORY  = args.plot_history
 | 
						|
    TENSORBOARD   = args.tensorboard
 | 
						|
    TB_LOGPATH    = args.tensorboard_logpath if args.tensorboard_logpath is not None else TB_LOGPATH
 | 
						|
    VAE_USE_SGD   = args.use_sgd
 | 
						|
    VAE_USE_KLDIV = args.use_kldiv
 | 
						|
    ES_PATIENCE   = args.patience
 | 
						|
 | 
						|
    sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
 | 
						|
    sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
 | 
						|
    sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(PLOT, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
 | 
						|
 | 
						|
    mgr = mp.Manager()
 | 
						|
 | 
						|
    shared_training_event = mgr.Event()
 | 
						|
    shared_training_event.clear()
 | 
						|
 | 
						|
    shared_shutdown_event = mgr.Event()
 | 
						|
    shared_shutdown_event.clear()
 | 
						|
 | 
						|
    shared_packet_queue = mgr.JoinableQueue()
 | 
						|
    shared_plot_queue = mgr.JoinableQueue()
 | 
						|
 | 
						|
    nDPIsrvd_job = mp.Process(target=ndpisrvd_worker, args=(
 | 
						|
                                                            address,
 | 
						|
                                                            shared_shutdown_event,
 | 
						|
                                                            shared_training_event,
 | 
						|
                                                            shared_packet_queue
 | 
						|
                                                           ))
 | 
						|
    nDPIsrvd_job.start()
 | 
						|
 | 
						|
    keras_job = mp.Process(target=keras_worker, args=(
 | 
						|
                                                      args.load_model,
 | 
						|
                                                      args.save_model,
 | 
						|
                                                      shared_shutdown_event,
 | 
						|
                                                      shared_training_event,
 | 
						|
                                                      shared_packet_queue,
 | 
						|
                                                      shared_plot_queue
 | 
						|
                                                     ))
 | 
						|
    keras_job.start()
 | 
						|
 | 
						|
    if PLOT is True:
 | 
						|
        plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
 | 
						|
        plot_job.start()
 | 
						|
 | 
						|
    try:
 | 
						|
        shared_shutdown_event.wait()
 | 
						|
    except KeyboardInterrupt:
 | 
						|
        print('\nShutting down worker processess..')
 | 
						|
 | 
						|
    if PLOT is True:
 | 
						|
        plot_job.terminate()
 | 
						|
        plot_job.join()
 | 
						|
    nDPIsrvd_job.terminate()
 | 
						|
    nDPIsrvd_job.join()
 | 
						|
    keras_job.join(timeout=3)
 | 
						|
    keras_job.terminate()
 |