Files
nDPId/examples/c-captured/c-captured.c
Toni efed6f196e Read and parse configuration files. Fixes #41. (#42)
Read and parse configuration files. Fixes #41.

 * supports nDPId / nDPIsrvd via command line parameter `-f`
 * nDPId: read general/tuning and libnDPI settings
 * support for settings risk domains libnDPI option via config file or via `-R` (Fixes #45, thanks to @UnveilTech)
 * added some documentation in the config file
 * adjusted Systemd and Debian packaging to make use of config files

Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
2024-10-16 14:13:55 +02:00

1392 lines
42 KiB
C

#include <arpa/inet.h>
#include <errno.h>
#include <linux/limits.h>
#include <netinet/ip_icmp.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <pcap/pcap.h>
#include <signal.h>
#include <stdbool.h> // ndpi_typedefs.h
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <ndpi_typedefs.h>
#include <ndpi_api.h>
#include "nDPIsrvd.h"
#include "utarray.h"
#include "utils.h"
// #define VERBOSE
#define DEFAULT_DATADIR "/tmp/nDPId-captured"
struct packet_data
{
nDPIsrvd_ull error_event_id;
nDPIsrvd_ull packet_id;
nDPIsrvd_ull packet_datalink;
nDPIsrvd_ull packet_ts_sec;
nDPIsrvd_ull packet_ts_usec;
nDPIsrvd_ull packet_len;
int base64_packet_size;
union
{
char * base64_packet;
char const * base64_packet_const;
};
};
struct flow_packet_data
{
nDPIsrvd_ull packet_ts_sec;
nDPIsrvd_ull packet_ts_usec;
nDPIsrvd_ull packet_len;
int base64_packet_size;
union
{
char * base64_packet;
char const * base64_packet_const;
};
};
struct global_user_data
{
UT_array * packets; // packet_data
};
struct flow_user_data
{
uint8_t new_seen : 1;
uint8_t detection_finished : 1;
uint8_t guessed : 1;
uint8_t detected : 1;
uint8_t risky : 1;
uint8_t midstream : 1;
nDPIsrvd_ull flow_datalink;
nDPIsrvd_ull flow_max_packets;
nDPIsrvd_ull flow_tot_l4_payload_len;
UT_array * packets; // flow_packet_data
};
static struct nDPIsrvd_socket * ndpisrvd_socket = NULL;
static int main_thread_shutdown = 0;
static char * pidfile = NULL;
static char * serv_optarg = NULL;
static nDPIsrvd_ull pcap_filename_rotation = 0;
static time_t pcap_filename_last_rotation = 0;
static struct tm pcap_filename_last_rotation_tm = {};
static char * user = NULL;
static char * group = NULL;
static uint8_t logging_mode = 0;
static uint8_t capture_mode = 0;
static char * datadir = NULL;
static uint8_t process_guessed = 0;
static uint8_t process_undetected = 0;
static ndpi_risk process_risky = NDPI_NO_RISK;
static uint8_t process_midstream = 0;
static uint8_t ignore_empty_flows = 0;
size_t const max_packet_len = 65535;
#ifdef ENABLE_MEMORY_PROFILING
void nDPIsrvd_memprof_log_alloc(size_t alloc_size)
{
(void)alloc_size;
}
void nDPIsrvd_memprof_log_free(size_t free_size)
{
(void)free_size;
}
void nDPIsrvd_memprof_log(char const * const format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "%s", "nDPIsrvd MemoryProfiler: ");
vfprintf(stderr, format, ap);
fprintf(stderr, "%s\n", "");
va_end(ap);
}
#endif
static int pcap_open_or_append(int packet_datalink,
const char * const filename,
pcap_t ** const p,
pcap_dumper_t ** const pd)
{
*p = pcap_open_dead(packet_datalink, max_packet_len);
if (*p == NULL)
{
return 1;
}
if (access(filename, F_OK) == 0)
{
*pd = pcap_dump_open_append(*p, filename);
}
else
{
*pd = pcap_dump_open(*p, filename);
}
if (*pd == NULL)
{
logger(1, "pcap error %s", pcap_geterr(*p));
pcap_close(*p);
return 1;
}
return 0;
}
static void decode_base64(pcap_dumper_t * const pd,
struct packet_data * const pd_elt,
struct flow_packet_data * const fd_elt)
{
char const * base64_packet;
size_t base64_packet_size;
nDPIsrvd_ull packet_ts_sec, packet_ts_usec;
unsigned char pkt_buf[max_packet_len];
size_t pkt_buf_len = sizeof(pkt_buf);
if (pd_elt != NULL)
{
base64_packet = pd_elt->base64_packet;
base64_packet_size = pd_elt->base64_packet_size;
packet_ts_sec = pd_elt->packet_ts_sec;
packet_ts_usec = pd_elt->packet_ts_usec;
}
else if (fd_elt != NULL)
{
base64_packet = fd_elt->base64_packet;
base64_packet_size = fd_elt->base64_packet_size;
packet_ts_sec = fd_elt->packet_ts_sec;
packet_ts_usec = fd_elt->packet_ts_usec;
}
else
{
logger(1, "%s", "BUG: Can not decode base64 packet.");
return;
}
if (nDPIsrvd_base64decode(base64_packet, base64_packet_size, pkt_buf, &pkt_buf_len) != 0 || pkt_buf_len == 0)
{
logger(1, "packet base64 decode failed (%zu bytes): %s", base64_packet_size, base64_packet);
}
else
{
struct pcap_pkthdr phdr;
phdr.ts.tv_sec = packet_ts_sec;
phdr.ts.tv_usec = packet_ts_usec;
phdr.caplen = pkt_buf_len;
phdr.len = pkt_buf_len;
pcap_dump((unsigned char *)pd, &phdr, pkt_buf);
}
}
static void packet_data_copy(void * dst, const void * src)
{
struct packet_data * const pd_dst = (struct packet_data *)dst;
struct packet_data const * const pd_src = (struct packet_data *)src;
*pd_dst = *pd_src;
if (pd_src->base64_packet != NULL && pd_src->base64_packet_size > 0)
{
pd_dst->base64_packet = strndup(pd_src->base64_packet, pd_src->base64_packet_size);
}
else
{
pd_dst->base64_packet = NULL;
pd_dst->base64_packet_size = 0;
}
}
static void packet_data_dtor(void * elt)
{
struct packet_data * const pd_elt = (struct packet_data *)elt;
if (pd_elt->base64_packet != NULL)
{
free(pd_elt->base64_packet);
pd_elt->base64_packet = NULL;
pd_elt->base64_packet_size = 0;
}
}
static void flow_packet_data_copy(void * dst, const void * src)
{
struct flow_packet_data * const pd_dst = (struct flow_packet_data *)dst;
struct flow_packet_data const * const pd_src = (struct flow_packet_data *)src;
*pd_dst = *pd_src;
if (pd_src->base64_packet != NULL && pd_src->base64_packet_size > 0)
{
pd_dst->base64_packet = strndup(pd_src->base64_packet, pd_src->base64_packet_size);
}
else
{
pd_dst->base64_packet = NULL;
pd_dst->base64_packet_size = 0;
}
}
static void flow_packet_data_dtor(void * elt)
{
struct flow_packet_data * const pd_elt = (struct flow_packet_data *)elt;
if (pd_elt->base64_packet != NULL)
{
free(pd_elt->base64_packet);
pd_elt->base64_packet = NULL;
pd_elt->base64_packet_size = 0;
}
}
static const UT_icd packet_data_icd = {sizeof(struct packet_data), NULL, packet_data_copy, packet_data_dtor};
static const UT_icd flow_packet_data_icd = {sizeof(struct flow_packet_data),
NULL,
flow_packet_data_copy,
flow_packet_data_dtor};
static int utarray_packets_init(struct global_user_data * const global_user)
{
if (capture_mode == 0)
{
return -1;
}
if (global_user->packets == NULL)
{
utarray_new(global_user->packets, &packet_data_icd);
}
return global_user->packets != NULL;
}
static void utarray_packets_free(struct global_user_data * const global_user)
{
if (capture_mode == 0)
{
return;
}
if (global_user->packets != NULL)
{
utarray_free(global_user->packets);
global_user->packets = NULL;
}
}
static int utarray_packets_add(struct global_user_data * const global_user, struct packet_data const * const pd)
{
if (capture_mode == 0)
{
return -1;
}
unsigned int array_len = utarray_len(global_user->packets);
utarray_push_back(global_user->packets, pd);
return utarray_len(global_user->packets) == array_len + 1u;
}
static struct packet_data * utarray_packets_get(struct global_user_data * const global_user, nDPIsrvd_ull packet_id)
{
if (capture_mode == 0)
{
return NULL;
}
for (size_t i = 0; i < utarray_len(global_user->packets); ++i)
{
struct packet_data * const pd_elt = (struct packet_data *)utarray_eltptr(global_user->packets, i);
if (pd_elt->packet_id == packet_id)
{
return pd_elt;
}
}
return NULL;
}
static int utarray_flow_packets_init(struct flow_user_data * const flow_user)
{
if (capture_mode == 0)
{
return -1;
}
if (flow_user->packets == NULL)
{
utarray_new(flow_user->packets, &flow_packet_data_icd);
}
return flow_user->packets != NULL;
}
static void utarray_flow_packets_free(struct flow_user_data * const flow_user)
{
if (capture_mode == 0)
{
return;
}
if (flow_user->packets != NULL)
{
utarray_free(flow_user->packets);
flow_user->packets = NULL;
}
}
static int utarray_flow_packets_add(struct flow_user_data * const flow_user, struct flow_packet_data const * const pd)
{
if (capture_mode == 0)
{
return -1;
}
unsigned int array_len = utarray_len(flow_user->packets);
utarray_push_back(flow_user->packets, pd);
return utarray_len(flow_user->packets) == array_len + 1u;
}
static void set_ndpi_risk(ndpi_risk * const risk, nDPIsrvd_ull risk_to_add)
{
if (risk_to_add == 0)
{
*risk = (ndpi_risk)-1;
}
else
{
*risk |= 1ull << --risk_to_add;
}
}
static void unset_ndpi_risk(ndpi_risk * const risk, nDPIsrvd_ull risk_to_del)
{
if (risk_to_del == 0)
{
*risk = 0;
}
else
{
*risk &= ~(1ull << --risk_to_del);
}
}
static int has_ndpi_risk(ndpi_risk * const risk, nDPIsrvd_ull risk_to_check)
{
return (*risk & (1ull << --risk_to_check)) != 0;
}
static int generate_pcap_appendix(char * const appendix, size_t appendix_size)
{
if (pcap_filename_rotation > 0)
{
time_t current_time = time(NULL);
if (current_time >= pcap_filename_last_rotation + (time_t)pcap_filename_rotation)
{
pcap_filename_last_rotation = current_time;
if (localtime_r(&pcap_filename_last_rotation, &pcap_filename_last_rotation_tm) == NULL)
{
return 1;
}
}
if (strftime(appendix, appendix_size, "-%d_%m_%y-%H_%M_%S", &pcap_filename_last_rotation_tm) == 0)
{
return 1;
}
}
return 0;
}
static char * packet_generate_pcap_filename(char * const dest, size_t size, nDPIsrvd_ull packet_datalink)
{
char appendix[32] = {};
if (generate_pcap_appendix(appendix, sizeof(appendix)) != 0)
{
return NULL;
}
int ret = snprintf(dest, size, "%s/packet%s-dlt%llu.pcap", datadir, appendix, packet_datalink);
if (ret <= 0 || (size_t)ret > size)
{
return NULL;
}
return dest;
}
static char * flow_generate_pcap_filename(struct flow_user_data const * const flow_user, char * const dest, size_t size)
{
char appendix[32] = {};
if (generate_pcap_appendix(appendix, sizeof(appendix)) != 0)
{
return NULL;
}
if (flow_user->guessed != 0 || flow_user->detected == 0 || flow_user->risky != 0 || flow_user->midstream != 0)
{
char const * flow_type = NULL;
if (flow_user->midstream != 0)
{
flow_type = "midstream";
}
else if (flow_user->guessed != 0)
{
flow_type = "guessed";
}
else if (flow_user->detected == 0)
{
flow_type = "undetected";
}
else if (flow_user->risky != 0)
{
flow_type = "risky";
}
else
{
flow_type = "unknown-type";
}
int ret = snprintf(dest, size, "%s/flow-%s%s.pcap", datadir, flow_type, appendix);
if (ret <= 0 || (size_t)ret > size)
{
return NULL;
}
}
else
{
return NULL;
}
return dest;
}
static int packet_write_pcap_file(struct global_user_data const * const global_user)
{
UT_array * const pd_array = global_user->packets;
if (utarray_len(pd_array) == 0)
{
logger(0, "Can not dump packets to pcap; packet array empty");
return 1;
}
while (utarray_len(pd_array) > 0)
{
struct packet_data * const pd_elt = (struct packet_data *)utarray_front(pd_array);
if (pd_elt == NULL)
{
return 1;
}
nDPIsrvd_ull packet_datalink = pd_elt->packet_datalink;
char filename[PATH_MAX];
if (packet_generate_pcap_filename(filename, sizeof(filename), packet_datalink) == NULL)
{
logger(1, "%s", "Internal error. Could not generate PCAP filename, exit ..");
return 1;
}
pcap_t * p = NULL;
pcap_dumper_t * pd = NULL;
if (pcap_open_or_append(packet_datalink, filename, &p, &pd) != 0)
{
logger(1, "Can not dump packets to pcap; file open/append failed");
return 1;
}
for (size_t i = 0; i < utarray_len(pd_array); ++i)
{
struct packet_data * const pd_elt_dmp = (struct packet_data *)utarray_eltptr(pd_array, i);
if (pd_elt_dmp == NULL)
{
return 1;
}
decode_base64(pd, pd_elt_dmp, NULL);
}
#ifdef VERBOSE
printf("packets dumped to %s\n", filename);
#endif
pcap_dump_close(pd);
pcap_close(p);
size_t i = 0;
while (utarray_len(pd_array) > 0)
{
struct packet_data * const pd_elt_rm = (struct packet_data *)utarray_eltptr(pd_array, i);
if (pd_elt_rm == NULL)
{
return 1;
}
if (pd_elt_rm->packet_datalink == packet_datalink)
{
#ifdef VERBOSE
printf("Remove packet index %zu with datalink %llu\n", i, packet_datalink);
#endif
utarray_erase(pd_array, i, 1);
}
else
{
i++;
}
}
}
return 0;
}
static int flow_write_pcap_file(struct flow_user_data const * const flow_user, char const * const filename)
{
UT_array const * const pd_array = flow_user->packets;
int packet_datalink = flow_user->flow_datalink;
pcap_t * p = NULL;
pcap_dumper_t * pd = NULL;
if (utarray_len(pd_array) == 0)
{
logger(1, "Can not dump flow packets to pcap; flow packet array empty");
return 0;
}
if (pcap_open_or_append(packet_datalink, filename, &p, &pd) != 0)
{
logger(1, "Can not dump flow packets to pcap; file open/append failed");
return 0;
}
struct flow_packet_data * pd_elt = (struct flow_packet_data *)utarray_front(pd_array);
do
{
if (pd_elt == NULL)
{
break;
}
decode_base64(pd, NULL, pd_elt);
} while ((pd_elt = (struct flow_packet_data *)utarray_next(pd_array, pd_elt)) != NULL);
pcap_dump_close(pd);
pcap_close(p);
return 0;
}
#ifdef VERBOSE
static void flow_packet_data_print(struct flow_user_data const * const flow_user)
{
UT_array const * const pd_array = flow_user->packets;
printf("packet-data array size(): %u\n", pd_array->n);
struct flow_packet_data * pd_elt = (struct flow_packet_data *)utarray_front(pd_array);
do
{
if (pd_elt == NULL)
{
break;
}
printf("\tpacket-data base64 length: %d\n", pd_elt->base64_packet_size);
} while ((pd_elt = (struct flow_packet_data *)utarray_next(pd_array, pd_elt)) != NULL);
}
#else
#define flow_packet_data_print(pd_array)
#endif
static enum nDPIsrvd_conversion_return perror_ull(enum nDPIsrvd_conversion_return retval, char const * const prefix)
{
switch (retval)
{
case CONVERSION_OK:
break;
case CONVERISON_KEY_NOT_FOUND:
logger(1, "%s: Key not found.", prefix);
break;
case CONVERSION_NOT_A_NUMBER:
logger(1, "%s: Not a valid number.", prefix);
break;
case CONVERSION_RANGE_EXCEEDED:
logger(1, "%s: Number too large.", prefix);
break;
default:
logger(1, "Internal error, invalid conversion return value.");
break;
}
return retval;
}
static void log_event(struct nDPIsrvd_socket const * const sock,
struct nDPIsrvd_flow * const flow,
char const * const event_name)
{
struct nDPIsrvd_json_token const * const src_ip = TOKEN_GET_SZ(sock, "src_ip");
struct nDPIsrvd_json_token const * const dst_ip = TOKEN_GET_SZ(sock, "dst_ip");
struct nDPIsrvd_json_token const * const l4_proto = TOKEN_GET_SZ(sock, "l4_proto");
struct nDPIsrvd_json_token const * const src_port = TOKEN_GET_SZ(sock, "src_port");
struct nDPIsrvd_json_token const * const dst_port = TOKEN_GET_SZ(sock, "dst_port");
char const *src_ip_str = NULL, *dst_ip_str = NULL, *l4_proto_str = NULL;
size_t src_ip_len, dst_ip_len, l4_proto_len;
char src_port_str[8] = {}, dst_port_str[8] = {};
char const * const na = "n/a";
const int na_len = (int)strlen(na);
if (src_ip == NULL || dst_ip == NULL)
{
logger(1, "Flow %llu: Missing essential source/destination IP address.", flow->id_as_ull);
}
else
{
src_ip_str = TOKEN_GET_VALUE(sock, src_ip, &src_ip_len);
dst_ip_str = TOKEN_GET_VALUE(sock, dst_ip, &dst_ip_len);
}
if (l4_proto != NULL)
{
l4_proto_str = TOKEN_GET_VALUE(sock, l4_proto, &l4_proto_len);
}
if (src_port != NULL && dst_port != NULL)
{
size_t src_port_len = 0;
size_t dst_port_len = 0;
char const * const tmp_src_port_str = TOKEN_GET_VALUE(sock, src_port, &src_port_len);
char const * const tmp_dst_port_str = TOKEN_GET_VALUE(sock, dst_port, &dst_port_len);
if (tmp_src_port_str != NULL && tmp_dst_port_str != NULL)
{
snprintf(src_port_str, nDPIsrvd_ARRAY_LENGTH(src_port_str), ":%.*s", (int)src_port_len, tmp_src_port_str);
snprintf(dst_port_str, nDPIsrvd_ARRAY_LENGTH(dst_port_str), ":%.*s", (int)dst_port_len, tmp_dst_port_str);
}
}
if (is_console_logger_enabled() != 0)
{
printf("Flow %llu %s: %.*s %.*s%s -> %.*s%s\n",
flow->id_as_ull,
event_name,
(l4_proto_str != NULL ? (int)l4_proto_len : na_len),
(l4_proto_str != NULL ? l4_proto_str : na),
(src_ip_str != NULL ? (int)src_ip_len : na_len),
(src_ip_str != NULL ? src_ip_str : na),
src_port_str,
(dst_ip_str != NULL ? (int)dst_ip_len : na_len),
(dst_ip_str != NULL ? dst_ip_str : na),
dst_port_str);
}
else
{
logger(0,
"Flow %llu %s: %.*s %.*s%s -> %.*s%s",
flow->id_as_ull,
event_name,
(l4_proto_str != NULL ? (int)l4_proto_len : na_len),
(l4_proto_str != NULL ? l4_proto_str : na),
(src_ip_str != NULL ? (int)src_ip_len : na_len),
(src_ip_str != NULL ? src_ip_str : na),
src_port_str,
(dst_ip_str != NULL ? (int)dst_ip_len : na_len),
(dst_ip_str != NULL ? dst_ip_str : na),
dst_port_str);
}
}
static enum nDPIsrvd_callback_return captured_json_callback(struct nDPIsrvd_socket * const sock,
struct nDPIsrvd_instance * const instance,
struct nDPIsrvd_thread_data * const thread_data,
struct nDPIsrvd_flow * const flow)
{
(void)instance;
(void)thread_data;
struct global_user_data * const global_user = (struct global_user_data *)&sock->global_user_data[0];
if (flow == NULL)
{
nDPIsrvd_ull packet_id = 0ull;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "packet_id"), &packet_id), "packet_id");
if (utarray_packets_init(global_user) == 0)
{
logger(1, "Memory allocation for packet data failed.");
return CALLBACK_ERROR;
}
if (TOKEN_GET_SZ(sock, "error_event_name") != NULL)
{
logger(1, "Received an error event for packet id %llu.", packet_id);
if (TOKEN_GET_SZ(sock, "error_event_id") == NULL)
{
logger(1, "Missing error event id.");
return CALLBACK_ERROR;
}
nDPIsrvd_ull error_event_id = 0;
TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "error_event_id"), &error_event_id);
struct packet_data pd = {.error_event_id = error_event_id, .packet_id = packet_id};
if (utarray_packets_add(global_user, &pd) == 0)
{
logger(1, "Could not add packet to array with id %llu.", packet_id);
return CALLBACK_ERROR;
}
}
else if (TOKEN_VALUE_EQUALS_SZ(sock, TOKEN_GET_SZ(sock, "packet_event_name"), "packet") != 0)
{
logger(1, "Received an packet event for packet id %llu.", packet_id);
if (capture_mode != 0)
{
struct packet_data * const pd = utarray_packets_get(global_user, packet_id);
if (pd == NULL)
{
logger(1, "Received an packet event w/o a previous error event for packet id %llu.", packet_id);
return CALLBACK_OK;
}
if (pd->packet_id != packet_id)
{
logger(1,
"Received a packet event with a different packet id then the one seen in the error event: "
"%llu != %llu.",
packet_id,
pd->packet_id);
return CALLBACK_OK;
}
struct nDPIsrvd_json_token const * const pkt = TOKEN_GET_SZ(sock, "pkt");
if (pkt == NULL)
{
logger(1, "%s", "No packet data available.");
logger(1,
"JSON message: '%.*s'",
nDPIsrvd_json_buffer_length(sock),
nDPIsrvd_json_buffer_string(sock));
return CALLBACK_OK;
}
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "pkt_datalink"), &pd->packet_datalink),
"pkt_datalink");
nDPIsrvd_ull thread_ts_usec = 0ull;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "thread_ts_usec"), &thread_ts_usec),
"thread_ts_usec");
nDPIsrvd_ull pkt_len = 0ull;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "pkt_caplen"), &pkt_len), "pkt_caplen");
pd->packet_ts_sec = thread_ts_usec / (1000 * 1000);
pd->packet_ts_usec = (thread_ts_usec % (1000 * 1000));
pd->packet_len = pkt_len;
pd->base64_packet_size = nDPIsrvd_get_token_size(sock, pkt);
pd->base64_packet_const = strndup(nDPIsrvd_get_token_value(sock, pkt), pd->base64_packet_size);
if (packet_write_pcap_file(global_user) != 0)
{
logger(1, "%s", "Could not dump non-flow packet data");
return CALLBACK_OK;
}
}
utarray_packets_free(global_user);
}
return CALLBACK_OK;
}
struct flow_user_data * const flow_user = (struct flow_user_data *)flow->flow_user_data;
if (flow_user == NULL || flow_user->detection_finished != 0)
{
return CALLBACK_OK;
}
if (TOKEN_VALUE_EQUALS_SZ(sock, TOKEN_GET_SZ(sock, "flow_state"), "finished") != 0)
{
flow_user->detection_finished = 1;
}
if (TOKEN_VALUE_EQUALS_SZ(sock, TOKEN_GET_SZ(sock, "packet_event_name"), "packet-flow") != 0)
{
struct nDPIsrvd_json_token const * const pkt = TOKEN_GET_SZ(sock, "pkt");
if (pkt == NULL)
{
logger(1, "%s", "No packet data available.");
logger(1, "JSON message: '%.*s'", nDPIsrvd_json_buffer_length(sock), nDPIsrvd_json_buffer_string(sock));
return CALLBACK_OK;
}
if (utarray_flow_packets_init(flow_user) == 0)
{
logger(1, "%s", "Memory allocation for captured packets failed.");
return CALLBACK_ERROR;
}
nDPIsrvd_ull thread_ts_usec = 0ull;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "thread_ts_usec"), &thread_ts_usec), "thread_ts_usec");
nDPIsrvd_ull pkt_len = 0ull;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "pkt_caplen"), &pkt_len), "pkt_caplen");
struct flow_packet_data pd = {.packet_ts_sec = thread_ts_usec / (1000 * 1000),
.packet_ts_usec = (thread_ts_usec % (1000 * 1000)),
.packet_len = pkt_len,
.base64_packet_size = nDPIsrvd_get_token_size(sock, pkt),
.base64_packet_const = nDPIsrvd_get_token_value(sock, pkt)};
if (utarray_flow_packets_add(flow_user, &pd) == 0)
{
logger(1, "%s", "Memory allocation to add a captured packet failed.");
return CALLBACK_ERROR;
}
}
{
struct nDPIsrvd_json_token const * const flow_event_name = TOKEN_GET_SZ(sock, "flow_event_name");
if (flow_event_name != NULL)
{
nDPIsrvd_ull nmb = 0;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "flow_src_tot_l4_payload_len"), &nmb),
"flow_src_tot_l4_payload_len");
flow_user->flow_tot_l4_payload_len += nmb;
nmb = 0;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "flow_dst_tot_l4_payload_len"), &nmb),
"flow_dst_tot_l4_payload_len");
flow_user->flow_tot_l4_payload_len += nmb;
}
if (TOKEN_VALUE_EQUALS_SZ(sock, flow_event_name, "new") != 0)
{
flow_user->new_seen = 1;
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "flow_datalink"), &flow_user->flow_datalink),
"flow_datalink");
perror_ull(TOKEN_VALUE_TO_ULL(sock, TOKEN_GET_SZ(sock, "flow_max_packets"), &flow_user->flow_max_packets),
"flow_max_packets");
if (TOKEN_VALUE_EQUALS_SZ(sock, TOKEN_GET_SZ(sock, "midstream"), "1") != 0)
{
flow_user->midstream = 1;
}
return CALLBACK_OK;
}
else if (flow_user->new_seen == 0)
{
return CALLBACK_OK;
}
else if (TOKEN_VALUE_EQUALS_SZ(sock, flow_event_name, "guessed") != 0)
{
flow_user->guessed = 1;
}
else if (TOKEN_VALUE_EQUALS_SZ(sock, flow_event_name, "not-detected") != 0)
{
flow_user->detected = 0;
flow_user->detection_finished = 1;
}
else if (TOKEN_VALUE_EQUALS_SZ(sock, flow_event_name, "detected") != 0 ||
TOKEN_VALUE_EQUALS_SZ(sock, flow_event_name, "detection-update"))
{
struct nDPIsrvd_json_token const * const flow_risk = TOKEN_GET_SZ(sock, "ndpi", "flow_risk");
struct nDPIsrvd_json_token const * current = NULL;
int next_child_index = -1;
flow_user->detected = 1;
if (flow_risk != NULL)
{
while ((current = nDPIsrvd_get_next_token(sock, flow_risk, &next_child_index)) != NULL)
{
nDPIsrvd_ull numeric_risk_value = (nDPIsrvd_ull)-1;
if (str_value_to_ull(TOKEN_GET_KEY(sock, current, NULL), &numeric_risk_value) == CONVERSION_OK &&
numeric_risk_value < NDPI_MAX_RISK && has_ndpi_risk(&process_risky, numeric_risk_value) != 0)
{
flow_user->risky = 1;
}
}
}
}
if (flow_user->detection_finished != 0 &&
((flow_user->guessed != 0 && process_guessed != 0) ||
(flow_user->detected == 0 && process_undetected != 0) || (flow_user->risky != 0 && process_risky != 0) ||
(flow_user->midstream != 0 && process_midstream != 0)))
{
if (flow_user->guessed != 0 && flow_user->detected != 0)
{
log_event(sock, flow, "BUG: guessed and detected at the same time");
}
if (logging_mode != 0)
{
if (flow_user->guessed != 0)
log_event(sock, flow, "guessed");
if (flow_user->detected == 0)
log_event(sock, flow, "not-detected");
if (flow_user->risky != 0)
log_event(sock, flow, "risky");
if (flow_user->midstream != 0)
log_event(sock, flow, "midstream");
}
if (flow_user->packets == NULL || flow_user->flow_max_packets == 0 || utarray_len(flow_user->packets) == 0)
{
if (capture_mode != 0)
{
log_event(sock, flow, "No packets captured");
}
}
else if (capture_mode != 0)
{
flow_packet_data_print(flow_user);
if (ignore_empty_flows == 0 || flow_user->flow_tot_l4_payload_len > 0)
{
char pcap_filename[PATH_MAX];
if (flow_generate_pcap_filename(flow_user, pcap_filename, sizeof(pcap_filename)) == NULL)
{
log_event(sock, flow, "Internal error. Could not generate PCAP filename, exit ..");
return CALLBACK_ERROR;
}
#ifdef VERBOSE
printf("Flow %llu saved to %s\n", flow->id_as_ull, pcap_filename);
#endif
errno = 0;
if (flow_write_pcap_file(flow_user, pcap_filename) != 0)
{
logger(1, "Could not dump packet data to pcap file %s: %s", pcap_filename, strerror(errno));
return CALLBACK_OK;
}
}
}
utarray_flow_packets_free(flow_user);
}
}
return CALLBACK_OK;
}
static void nDPIsrvd_write_flow_info_cb(struct nDPIsrvd_socket const * sock,
struct nDPIsrvd_instance const * instance,
struct nDPIsrvd_thread_data const * thread_data,
struct nDPIsrvd_flow const * flow,
void * user_data)
{
(void)sock;
(void)instance;
(void)thread_data;
(void)user_data;
struct flow_user_data const * const flow_user = (struct flow_user_data const *)flow->flow_user_data;
fprintf(stderr,
"[Flow %4llu][ptr: "
#ifdef __LP64__
"0x%016llx"
#else
"0x%08lx"
#endif
"][last-seen: %13llu][finished: %u][detected: %u][risky: "
"%u][total-L4-payload-length: "
"%4llu][packets-captured: %u]\n",
flow->id_as_ull,
#ifdef __LP64__
(unsigned long long int)flow,
#else
(unsigned long int)flow,
#endif
flow->last_seen,
flow_user->detection_finished,
flow_user->detected,
flow_user->risky,
flow_user->flow_tot_l4_payload_len,
flow_user->packets != NULL ? utarray_len(flow_user->packets) : 0);
logger(0,
"[Flow %4llu][ptr: "
#ifdef __LP64__
"0x%016llx"
#else
"0x%08lx"
#endif
"][last-seen: %13llu][finished: %u][detected: %u][risky: "
"%u][total-L4-payload-length: "
"%4llu][packets-captured: %u]",
flow->id_as_ull,
#ifdef __LP64__
(unsigned long long int)flow,
#else
(unsigned long int)flow,
#endif
flow->last_seen,
flow_user->detection_finished,
flow_user->detected,
flow_user->risky,
flow_user->flow_tot_l4_payload_len,
flow_user->packets != NULL ? utarray_len(flow_user->packets) : 0);
}
static void sighandler(int signum)
{
if (signum == SIGUSR1)
{
nDPIsrvd_flow_info(ndpisrvd_socket, nDPIsrvd_write_flow_info_cb, NULL);
}
else if (main_thread_shutdown == 0)
{
main_thread_shutdown = 1;
}
}
static void captured_flow_cleanup_callback(struct nDPIsrvd_socket * const sock,
struct nDPIsrvd_instance * const instance,
struct nDPIsrvd_thread_data * const thread_data,
struct nDPIsrvd_flow * const flow,
enum nDPIsrvd_cleanup_reason reason)
{
(void)sock;
(void)instance;
(void)thread_data;
(void)reason;
struct flow_user_data * const ud = (struct flow_user_data *)flow->flow_user_data;
if (ud != NULL && ud->packets != NULL)
{
utarray_free(ud->packets);
ud->packets = NULL;
}
}
static void print_usage(char const * const arg0)
{
static char const usage[] =
"Usage: %s "
"[-c] [-d] [-p pidfile] [-s host] [-r rotate-every-n-seconds]\n"
"\t \t[-u user] [-g group] [-D dir] [-G] [-U] [-R risk] [-M]\n\n"
"\t-c\tLog all messages to stdout/stderr instead of syslog.\n"
"\t-d\tForking into background after initialization.\n"
"\t-p\tWrite the daemon PID to the given file path.\n"
"\t-s\tDestination where nDPIsrvd is listening on.\n"
"\t \tCan be either a path to UNIX socket or an IPv4/TCP-Port IPv6/TCP-Port tuple.\n"
"\t-r\tRotate PCAP files every n seconds\n"
"\t-u\tChange user.\n"
"\t-g\tChange group.\n"
"\t-l\tLogging mode: Log events and some flow metadata to syslog.\n"
"\t-L\tCapture mode: Capture and dump packets.\n"
"\t-D\tDatadir - Where to store PCAP files.\n"
"\t-G\tGuessed - Dump guessed flows to a PCAP file.\n"
"\t-U\tUndetected - Dump undetected flows to a PCAP file.\n"
"\t-R\tRisky - Dump risky flows to a PCAP file. See additional help below.\n"
"\t-M\tMidstream - Dump midstream flows to a PCAP file.\n"
"\t-E\tEmpty - Ignore flows w/o any layer 4 payload\n\n"
"\tPossible options for `-R' (can be specified multiple times, processed from left to right, ~ disables a "
"risk):\n"
"\t \tExample: -R0 -R~15 would enable all risks except risk with id 15\n";
fprintf(stderr, usage, arg0);
#ifndef LIBNDPI_STATIC
fprintf(stderr, "\t\t%d - %s\n", 0, "Capture all risks");
#else
fprintf(stderr, "\t\t%d - %s\n\t\t", 0, "Capture all risks");
#endif
for (int risk = NDPI_NO_RISK + 1; risk < NDPI_MAX_RISK; ++risk)
{
#ifndef LIBNDPI_STATIC
fprintf(stderr, "\t\t%d - %s%s", risk, ndpi_risk2str(risk), (risk == NDPI_MAX_RISK - 1 ? "\n\n" : "\n"));
#else
fprintf(stderr, "%d%s", risk, (risk == NDPI_MAX_RISK - 1 ? "\n" : ","));
#endif
}
}
static int parse_options(int argc, char ** argv)
{
int opt;
while ((opt = getopt(argc, argv, "hcdp:s:r:u:g:lLD:GUR:ME")) != -1)
{
switch (opt)
{
case 'c':
enable_console_logger();
break;
case 'd':
daemonize_enable();
break;
case 'p':
free(pidfile);
pidfile = strdup(optarg);
break;
case 's':
free(serv_optarg);
serv_optarg = strdup(optarg);
break;
case 'r':
if (perror_ull(str_value_to_ull(optarg, &pcap_filename_rotation), "pcap_filename_rotation") !=
CONVERSION_OK)
{
fprintf(stderr, "%s: Argument for `-r' is not a number: %s\n", argv[0], optarg);
return 1;
}
break;
case 'u':
free(user);
user = strdup(optarg);
break;
case 'g':
free(group);
group = strdup(optarg);
break;
case 'l':
logging_mode = 1;
break;
case 'L':
capture_mode = 1;
break;
case 'D':
free(datadir);
datadir = strdup(optarg);
break;
case 'G':
process_guessed = 1;
break;
case 'U':
process_undetected = 1;
break;
case 'R':
{
char * value = (optarg[0] == '~' ? optarg + 1 : optarg);
nDPIsrvd_ull risk;
if (perror_ull(str_value_to_ull(value, &risk), "process_risky") != CONVERSION_OK)
{
fprintf(stderr, "%s: Argument for `-R' is not a number: %s\n", argv[0], optarg);
return 1;
}
if (risk >= NDPI_MAX_RISK)
{
fprintf(stderr, "%s: Invalid risk set: %s\n", argv[0], optarg);
return 1;
}
if (optarg[0] == '~')
{
unset_ndpi_risk(&process_risky, risk);
}
else
{
set_ndpi_risk(&process_risky, risk);
}
break;
}
case 'M':
process_midstream = 1;
break;
case 'E':
ignore_empty_flows = 1;
break;
default:
print_usage(argv[0]);
return 1;
}
}
if (logging_mode == 0 && capture_mode == 0)
{
fprintf(stderr, "%s: Neither `-l' nor `-L' given. See application usage for more information.\n", argv[0]);
return 1;
}
if (serv_optarg == NULL)
{
serv_optarg = strdup(DISTRIBUTOR_UNIX_SOCKET);
}
if (nDPIsrvd_setup_address(&ndpisrvd_socket->address, serv_optarg) != 0)
{
fprintf(stderr, "%s: Could not parse address `%s'\n", argv[0], serv_optarg);
return 1;
}
if (datadir == NULL)
{
datadir = strdup(DEFAULT_DATADIR);
}
if (process_guessed == 0 && process_undetected == 0 && process_risky == 0 && process_midstream == 0)
{
fprintf(stderr, "%s: Nothing to capture. Use at least one of -G / -U / -R / -M flags.\n", argv[0]);
return 1;
}
if (optind < argc)
{
fprintf(stderr, "Unexpected argument after options\n\n");
print_usage(argv[0]);
return 1;
}
if (capture_mode != 0)
{
errno = 0;
if (datadir[0] != '/')
{
fprintf(stderr,
"%s: PCAP capture directory must be absolut i.e. starting with `/', path given: `%s'\n",
argv[0],
datadir);
return 1;
}
if (mkdir(datadir, S_IRWXU) != 0 && errno != EEXIST)
{
fprintf(stderr, "%s: Could not create directory %s: %s\n", argv[0], datadir, strerror(errno));
return 1;
}
{
struct stat datadir_stat;
if (stat(datadir, &datadir_stat) != 0 || S_ISDIR(datadir_stat.st_mode) == 0)
{
fprintf(stderr, "%s: Data directory %s is not a directory\n", argv[0], datadir);
return 1;
}
}
}
return 0;
}
static int mainloop(void)
{
enum nDPIsrvd_read_return read_ret = READ_OK;
while (main_thread_shutdown == 0)
{
read_ret = nDPIsrvd_read(ndpisrvd_socket);
if (errno == EINTR)
{
continue;
}
if (read_ret == READ_TIMEOUT)
{
logger(0,
"No data received during the last %llu second(s).\n",
(long long unsigned int)ndpisrvd_socket->read_timeout.tv_sec);
continue;
}
if (read_ret != READ_OK)
{
logger(1, "Could not read from socket: %s", nDPIsrvd_enum_to_string(read_ret));
break;
}
enum nDPIsrvd_parse_return parse_ret = nDPIsrvd_parse_all(ndpisrvd_socket);
if (parse_ret != PARSE_NEED_MORE_DATA)
{
logger(1, "Could not parse json message: %s", nDPIsrvd_enum_to_string(parse_ret));
break;
}
}
if (main_thread_shutdown == 0 && read_ret != READ_OK)
{
return 1;
}
return 0;
}
int main(int argc, char ** argv)
{
init_logging("nDPIsrvd-captured");
ndpisrvd_socket = nDPIsrvd_socket_init(sizeof(struct global_user_data),
0,
0,
sizeof(struct flow_user_data),
captured_json_callback,
NULL,
captured_flow_cleanup_callback);
if (ndpisrvd_socket == NULL)
{
fprintf(stderr, "%s: nDPIsrvd socket memory allocation failed!\n", argv[0]);
return 1;
}
if (parse_options(argc, argv) != 0)
{
return 1;
}
logger(0, "Recv buffer size: %u", NETWORK_BUFFER_MAX_SIZE);
logger(0, "Connecting to `%s'..", serv_optarg);
if (nDPIsrvd_connect(ndpisrvd_socket) != CONNECT_OK)
{
fprintf(stderr, "%s: nDPIsrvd socket connect to %s failed!\n", argv[0], serv_optarg);
nDPIsrvd_socket_free(&ndpisrvd_socket);
return 1;
}
signal(SIGUSR1, sighandler);
signal(SIGINT, sighandler);
signal(SIGTERM, sighandler);
signal(SIGPIPE, sighandler);
if (daemonize_with_pidfile(pidfile) != 0)
{
return 1;
}
if (capture_mode != 0 && chmod_chown(datadir, S_IRWXU | S_IRGRP | S_IXGRP, user, group) != 0)
{
logger(1, "Could not chmod/chown `%s': %s", datadir, strerror(errno));
return 1;
}
errno = 0;
if (user != NULL && change_user_group(user, group, pidfile) != 0)
{
if (errno != 0)
{
logger(1, "Change user/group failed: %s", strerror(errno));
}
else
{
logger(1, "Change user/group failed.");
}
return 1;
}
if (nDPIsrvd_set_read_timeout(ndpisrvd_socket, 180, 0) != 0)
{
return 1;
}
int retval = mainloop();
utarray_packets_free((struct global_user_data *)ndpisrvd_socket->global_user_data);
nDPIsrvd_socket_free(&ndpisrvd_socket);
daemonize_shutdown(pidfile);
shutdown_logging();
return retval;
}