Perturbative Raman Solver

Raman effect evaluation based on a perturbative solution for faster computation

Change-Id: Ie6d4ea4d9f95d8755dc8dfd004c954d4c2c5f759
This commit is contained in:
AndreaDAmico
2024-06-10 22:38:32 -04:00
committed by Andrea D'Amico
parent bbe9ef7356
commit 39d3f0f483
6 changed files with 110 additions and 35 deletions

View File

@@ -15,11 +15,12 @@ from numpy import interp, pi, zeros, cos, array, append, ones, exp, arange, sqrt
polyfit, log, reshape, swapaxes, full, nan
from logging import getLogger
from scipy.constants import k, h
from scipy.integrate import cumtrapz
from scipy.interpolate import interp1d
from math import isclose
from math import isclose, factorial
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.exceptions import EquipmentConfigError
from gnpy.core.exceptions import EquipmentConfigError, ParametersError
from gnpy.core.parameters import SimParams
from gnpy.core.info import SpectralInformation
@@ -136,15 +137,17 @@ class RamanSolver:
co_cr = fiber.cr(co_frequency)
co_alpha = fiber.alpha(co_frequency)
co_power_profile = \
RamanSolver.first_order_derivative_solution(co_power, co_alpha, co_cr, z, lumped_losses)
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(co_power, co_alpha, co_cr, z,
lumped_losses)
# Counter-propagating profile initialization
cnt_power_profile = zeros([cnt_frequency.size, z.size])
if cnt_frequency.size:
cnt_cr = fiber.cr(cnt_frequency)
cnt_alpha = fiber.alpha(cnt_frequency)
cnt_power_profile = \
flip(RamanSolver.first_order_derivative_solution(cnt_power, cnt_alpha, cnt_cr,
z[-1] - flip(z), flip(lumped_losses)), axis=1)
cnt_power_profile = flip(
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(cnt_power, cnt_alpha, cnt_cr,
z[-1] - flip(z),
flip(lumped_losses)), axis=1)
# Co-propagating and Counter-propagating Profile Computation
if co_frequency.size and cnt_frequency.size:
co_power_profile, cnt_power_profile = \
@@ -163,8 +166,9 @@ class RamanSolver:
alpha = fiber.alpha(spectral_info.frequency)
cr = fiber.cr(spectral_info.frequency)
# Power profile
power_profile = \
RamanSolver.first_order_derivative_solution(spectral_info.signal, alpha, cr, z, lumped_losses)
power_profile = (
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(spectral_info.signal, alpha, cr, z,
lumped_losses))
# Loss profile
loss_profile = power_profile / outer(spectral_info.signal, ones(z.size))
frequency = spectral_info.frequency
@@ -200,8 +204,8 @@ class RamanSolver:
return ase
@staticmethod
def first_order_derivative_solution(power_in, alpha, cr, z, lumped_losses):
"""Solves the Raman first order derivative equation
def calculate_unidirectional_stimulated_raman_scattering(power_in, alpha, cr, z, lumped_losses):
"""Solves the Raman equation
:param power_in: launch power array
:param alpha: loss coefficient array
@@ -210,18 +214,58 @@ class RamanSolver:
:param lumped_losses: concentrated losses array along the fiber span
:return: power profile matrix
"""
dz = z[1:] - z[:-1]
power = outer(power_in, ones(z.size))
for i in range(1, z.size):
power[:, i] = \
power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) * lumped_losses[i - 1]
if sim_params.raman_params.method == 'perturbative':
if sim_params.raman_params.order > 4:
raise ValueError(f'Order {sim_params.raman_params.order} not implemented in Raman Solver.')
z_lumped_losses = append(z[lumped_losses != 1], z[-1])
llumped_losses = append(1, lumped_losses[lumped_losses != 1])
power = outer(power_in, ones(z.size))
last_position = 0
z_indices = arange(0, z.size)
for z_lumped_loss, lumped_loss in zip(z_lumped_losses, llumped_losses):
if last_position < z[-1]:
interval = z_indices[(z >= last_position) * (z <= z_lumped_loss) == 1]
z_interval = z[interval] - last_position
last_position = z[interval][-1]
p0 = power_in * lumped_loss
power_interval = outer(p0, ones(z_interval.size))
alphaz = outer(alpha, z_interval)
expz = exp(- alphaz)
eff_length = 1 / outer(alpha, ones(z_interval.size)) * (1 - expz)
crpz = transpose(ones([z_interval.size, cr.shape[0], cr.shape[1]]) * cr * p0, (1, 2, 0))
exponent = - alphaz
if sim_params.raman_params.order >= 1:
gamma1 = sum(crpz * eff_length, 1)
exponent += gamma1
if sim_params.raman_params.order >= 2:
gamma2 = sum(crpz * cumtrapz(expz * gamma1, z_interval, axis=1, initial=0), 1)
exponent += gamma2
if sim_params.raman_params.order >= 3:
gamma3 = sum(crpz * cumtrapz(expz * (gamma2 + 1/2 * gamma1**2), z_interval,
axis=1, initial=0), 1)
exponent += gamma3
if sim_params.raman_params.order >= 4:
gamma4 = sum(crpz * cumtrapz(expz * (gamma3 + gamma1 * gamma2 + 1/factorial(3) * gamma1**3),
z_interval, axis=1, initial=0), 1)
exponent += gamma4
power_interval *= exp(exponent)
power[:, interval[1:]] = power_interval[:, 1:]
power_in = power_interval[:, -1]
elif sim_params.raman_params.method == 'numerical':
dz = z[1:] - z[:-1]
power = outer(power_in, ones(z.size))
for i in range(1, z.size):
power[:, i] = (power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) *
lumped_losses[i - 1])
else:
raise ValueError(f'Method {sim_params.raman_params.method} not implemented in Raman Solver.')
return power
@staticmethod
def iterative_algorithm(co_initial_guess_power, cnt_initial_guess_power, co_frequency, cnt_frequency, z, fiber,
lumped_losses):
"""Solves the Raman first order derivative equation in case of both co- and counter-propagating
frequencies
"""Solves the Raman equation in case of both co- and counter-propagating frequencies
:param co_initial_guess_power: co-propagationg Raman first order derivative equation solution
:param cnt_initial_guess_power: counter-propagationg Raman first order derivative equation solution