mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-11-02 02:57:52 +00:00
Perturbative Raman Solver
Raman effect evaluation based on a perturbative solution for faster computation Change-Id: Ie6d4ea4d9f95d8755dc8dfd004c954d4c2c5f759
This commit is contained in:

committed by
Andrea D'Amico

parent
bbe9ef7356
commit
39d3f0f483
@@ -15,11 +15,12 @@ from numpy import interp, pi, zeros, cos, array, append, ones, exp, arange, sqrt
|
||||
polyfit, log, reshape, swapaxes, full, nan
|
||||
from logging import getLogger
|
||||
from scipy.constants import k, h
|
||||
from scipy.integrate import cumtrapz
|
||||
from scipy.interpolate import interp1d
|
||||
from math import isclose
|
||||
from math import isclose, factorial
|
||||
|
||||
from gnpy.core.utils import db2lin, lin2db
|
||||
from gnpy.core.exceptions import EquipmentConfigError
|
||||
from gnpy.core.exceptions import EquipmentConfigError, ParametersError
|
||||
from gnpy.core.parameters import SimParams
|
||||
from gnpy.core.info import SpectralInformation
|
||||
|
||||
@@ -136,15 +137,17 @@ class RamanSolver:
|
||||
co_cr = fiber.cr(co_frequency)
|
||||
co_alpha = fiber.alpha(co_frequency)
|
||||
co_power_profile = \
|
||||
RamanSolver.first_order_derivative_solution(co_power, co_alpha, co_cr, z, lumped_losses)
|
||||
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(co_power, co_alpha, co_cr, z,
|
||||
lumped_losses)
|
||||
# Counter-propagating profile initialization
|
||||
cnt_power_profile = zeros([cnt_frequency.size, z.size])
|
||||
if cnt_frequency.size:
|
||||
cnt_cr = fiber.cr(cnt_frequency)
|
||||
cnt_alpha = fiber.alpha(cnt_frequency)
|
||||
cnt_power_profile = \
|
||||
flip(RamanSolver.first_order_derivative_solution(cnt_power, cnt_alpha, cnt_cr,
|
||||
z[-1] - flip(z), flip(lumped_losses)), axis=1)
|
||||
cnt_power_profile = flip(
|
||||
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(cnt_power, cnt_alpha, cnt_cr,
|
||||
z[-1] - flip(z),
|
||||
flip(lumped_losses)), axis=1)
|
||||
# Co-propagating and Counter-propagating Profile Computation
|
||||
if co_frequency.size and cnt_frequency.size:
|
||||
co_power_profile, cnt_power_profile = \
|
||||
@@ -163,8 +166,9 @@ class RamanSolver:
|
||||
alpha = fiber.alpha(spectral_info.frequency)
|
||||
cr = fiber.cr(spectral_info.frequency)
|
||||
# Power profile
|
||||
power_profile = \
|
||||
RamanSolver.first_order_derivative_solution(spectral_info.signal, alpha, cr, z, lumped_losses)
|
||||
power_profile = (
|
||||
RamanSolver.calculate_unidirectional_stimulated_raman_scattering(spectral_info.signal, alpha, cr, z,
|
||||
lumped_losses))
|
||||
# Loss profile
|
||||
loss_profile = power_profile / outer(spectral_info.signal, ones(z.size))
|
||||
frequency = spectral_info.frequency
|
||||
@@ -200,8 +204,8 @@ class RamanSolver:
|
||||
return ase
|
||||
|
||||
@staticmethod
|
||||
def first_order_derivative_solution(power_in, alpha, cr, z, lumped_losses):
|
||||
"""Solves the Raman first order derivative equation
|
||||
def calculate_unidirectional_stimulated_raman_scattering(power_in, alpha, cr, z, lumped_losses):
|
||||
"""Solves the Raman equation
|
||||
|
||||
:param power_in: launch power array
|
||||
:param alpha: loss coefficient array
|
||||
@@ -210,18 +214,58 @@ class RamanSolver:
|
||||
:param lumped_losses: concentrated losses array along the fiber span
|
||||
:return: power profile matrix
|
||||
"""
|
||||
dz = z[1:] - z[:-1]
|
||||
power = outer(power_in, ones(z.size))
|
||||
for i in range(1, z.size):
|
||||
power[:, i] = \
|
||||
power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) * lumped_losses[i - 1]
|
||||
if sim_params.raman_params.method == 'perturbative':
|
||||
if sim_params.raman_params.order > 4:
|
||||
raise ValueError(f'Order {sim_params.raman_params.order} not implemented in Raman Solver.')
|
||||
z_lumped_losses = append(z[lumped_losses != 1], z[-1])
|
||||
llumped_losses = append(1, lumped_losses[lumped_losses != 1])
|
||||
power = outer(power_in, ones(z.size))
|
||||
last_position = 0
|
||||
z_indices = arange(0, z.size)
|
||||
|
||||
for z_lumped_loss, lumped_loss in zip(z_lumped_losses, llumped_losses):
|
||||
if last_position < z[-1]:
|
||||
interval = z_indices[(z >= last_position) * (z <= z_lumped_loss) == 1]
|
||||
z_interval = z[interval] - last_position
|
||||
last_position = z[interval][-1]
|
||||
p0 = power_in * lumped_loss
|
||||
power_interval = outer(p0, ones(z_interval.size))
|
||||
alphaz = outer(alpha, z_interval)
|
||||
expz = exp(- alphaz)
|
||||
eff_length = 1 / outer(alpha, ones(z_interval.size)) * (1 - expz)
|
||||
crpz = transpose(ones([z_interval.size, cr.shape[0], cr.shape[1]]) * cr * p0, (1, 2, 0))
|
||||
exponent = - alphaz
|
||||
if sim_params.raman_params.order >= 1:
|
||||
gamma1 = sum(crpz * eff_length, 1)
|
||||
exponent += gamma1
|
||||
if sim_params.raman_params.order >= 2:
|
||||
gamma2 = sum(crpz * cumtrapz(expz * gamma1, z_interval, axis=1, initial=0), 1)
|
||||
exponent += gamma2
|
||||
if sim_params.raman_params.order >= 3:
|
||||
gamma3 = sum(crpz * cumtrapz(expz * (gamma2 + 1/2 * gamma1**2), z_interval,
|
||||
axis=1, initial=0), 1)
|
||||
exponent += gamma3
|
||||
if sim_params.raman_params.order >= 4:
|
||||
gamma4 = sum(crpz * cumtrapz(expz * (gamma3 + gamma1 * gamma2 + 1/factorial(3) * gamma1**3),
|
||||
z_interval, axis=1, initial=0), 1)
|
||||
exponent += gamma4
|
||||
power_interval *= exp(exponent)
|
||||
power[:, interval[1:]] = power_interval[:, 1:]
|
||||
power_in = power_interval[:, -1]
|
||||
elif sim_params.raman_params.method == 'numerical':
|
||||
dz = z[1:] - z[:-1]
|
||||
power = outer(power_in, ones(z.size))
|
||||
for i in range(1, z.size):
|
||||
power[:, i] = (power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) *
|
||||
lumped_losses[i - 1])
|
||||
else:
|
||||
raise ValueError(f'Method {sim_params.raman_params.method} not implemented in Raman Solver.')
|
||||
return power
|
||||
|
||||
@staticmethod
|
||||
def iterative_algorithm(co_initial_guess_power, cnt_initial_guess_power, co_frequency, cnt_frequency, z, fiber,
|
||||
lumped_losses):
|
||||
"""Solves the Raman first order derivative equation in case of both co- and counter-propagating
|
||||
frequencies
|
||||
"""Solves the Raman equation in case of both co- and counter-propagating frequencies
|
||||
|
||||
:param co_initial_guess_power: co-propagationg Raman first order derivative equation solution
|
||||
:param cnt_initial_guess_power: counter-propagationg Raman first order derivative equation solution
|
||||
|
Reference in New Issue
Block a user