mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-11-01 02:28:05 +00:00
Refactoring with some incompatible changes
Please be advised that there were incompatible changes in the Raman options, including a `s/phase_shift_tollerance/phase_shift_tolerance/`. Signed-off-by: AndreaDAmico <andrea.damico@polito.it> Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com> Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
This commit is contained in:
committed by
Jan Kundrát
parent
2960d307fa
commit
80eced85ec
@@ -1,6 +1,5 @@
|
||||
import numpy as np
|
||||
from operator import attrgetter
|
||||
from collections import namedtuple
|
||||
from logging import getLogger
|
||||
import scipy.constants as ph
|
||||
from scipy.integrate import solve_bvp
|
||||
@@ -9,154 +8,19 @@ from scipy.interpolate import interp1d
|
||||
from scipy.optimize import OptimizeResult
|
||||
|
||||
from gnpy.core.utils import db2lin
|
||||
from gnpy.core.parameters import SimParams
|
||||
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class RamanParams():
|
||||
def __init__(self, params):
|
||||
self._flag_raman = params['flag_raman']
|
||||
self._space_resolution = params['space_resolution']
|
||||
self._tolerance = params['tolerance']
|
||||
|
||||
@property
|
||||
def flag_raman(self):
|
||||
return self._flag_raman
|
||||
|
||||
@property
|
||||
def space_resolution(self):
|
||||
return self._space_resolution
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
return self._tolerance
|
||||
|
||||
class NLIParams():
|
||||
def __init__(self, params):
|
||||
self._nli_method_name = params['nli_method_name']
|
||||
self._wdm_grid_size = params['wdm_grid_size']
|
||||
self._dispersion_tolerance = params['dispersion_tolerance']
|
||||
self._phase_shift_tollerance = params['phase_shift_tollerance']
|
||||
self._f_cut_resolution = None
|
||||
self._f_pump_resolution = None
|
||||
|
||||
@property
|
||||
def nli_method_name(self):
|
||||
return self._nli_method_name
|
||||
|
||||
@property
|
||||
def wdm_grid_size(self):
|
||||
return self._wdm_grid_size
|
||||
|
||||
@property
|
||||
def dispersion_tolerance(self):
|
||||
return self._dispersion_tolerance
|
||||
|
||||
@property
|
||||
def phase_shift_tollerance(self):
|
||||
return self._phase_shift_tollerance
|
||||
|
||||
@property
|
||||
def f_cut_resolution(self):
|
||||
return self._f_cut_resolution
|
||||
|
||||
@f_cut_resolution.setter
|
||||
def f_cut_resolution(self, f_cut_resolution):
|
||||
self._f_cut_resolution = f_cut_resolution
|
||||
|
||||
@property
|
||||
def f_pump_resolution(self):
|
||||
return self._f_pump_resolution
|
||||
|
||||
@f_pump_resolution.setter
|
||||
def f_pump_resolution(self, f_pump_resolution):
|
||||
self._f_pump_resolution = f_pump_resolution
|
||||
|
||||
class SimParams():
|
||||
def __init__(self, params):
|
||||
self._raman_computed_channels = params['raman_computed_channels']
|
||||
self._raman_params = RamanParams(params=params['raman_parameters'])
|
||||
self._nli_params = NLIParams(params=params['nli_parameters'])
|
||||
|
||||
@property
|
||||
def raman_computed_channels(self):
|
||||
return self._raman_computed_channels
|
||||
|
||||
@property
|
||||
def raman_params(self):
|
||||
return self._raman_params
|
||||
|
||||
@property
|
||||
def nli_params(self):
|
||||
return self._nli_params
|
||||
|
||||
class FiberParams():
|
||||
def __init__(self, fiber):
|
||||
self._loss_coef = 2 * fiber.dbkm_2_lin()[1]
|
||||
self._length = fiber.length
|
||||
self._gamma = fiber.gamma
|
||||
self._beta2 = fiber.beta2()
|
||||
self._beta3 = fiber.beta3 if hasattr(fiber, 'beta3') else 0
|
||||
self._f_ref_beta = fiber.f_ref_beta if hasattr(fiber, 'f_ref_beta') else 0
|
||||
self._raman_efficiency = fiber.params.raman_efficiency
|
||||
self._temperature = fiber.operational['temperature']
|
||||
|
||||
@property
|
||||
def loss_coef(self):
|
||||
return self._loss_coef
|
||||
|
||||
@property
|
||||
def length(self):
|
||||
return self._length
|
||||
|
||||
@property
|
||||
def gamma(self):
|
||||
return self._gamma
|
||||
|
||||
@property
|
||||
def beta2(self):
|
||||
return self._beta2
|
||||
|
||||
@property
|
||||
def beta3(self):
|
||||
return self._beta3
|
||||
|
||||
@property
|
||||
def f_ref_beta(self):
|
||||
return self._f_ref_beta
|
||||
|
||||
@property
|
||||
def raman_efficiency(self):
|
||||
return self._raman_efficiency
|
||||
|
||||
@property
|
||||
def temperature(self):
|
||||
return self._temperature
|
||||
|
||||
def alpha0(self, f_ref=193.5e12):
|
||||
""" It returns the zero element of the series expansion of attenuation coefficient alpha(f) in the
|
||||
reference frequency f_ref
|
||||
|
||||
:param f_ref: reference frequency of series expansion [Hz]
|
||||
:return: alpha0: power attenuation coefficient in f_ref [Neper/m]
|
||||
"""
|
||||
if not hasattr(self.loss_coef, 'alpha_power'):
|
||||
alpha0 = self.loss_coef
|
||||
else:
|
||||
alpha_interp = interp1d(self.loss_coef['frequency'],
|
||||
self.loss_coef['alpha_power'])
|
||||
alpha0 = alpha_interp(f_ref)
|
||||
return alpha0
|
||||
|
||||
pump = namedtuple('RamanPump', 'power frequency propagation_direction')
|
||||
|
||||
def propagate_raman_fiber(fiber, *carriers):
|
||||
sim_params = fiber.sim_params
|
||||
raman_params = fiber.sim_params.raman_params
|
||||
nli_params = fiber.sim_params.nli_params
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
raman_params = sim_params.raman_params
|
||||
nli_params = sim_params.nli_params
|
||||
# apply input attenuation to carriers
|
||||
attenuation_in = db2lin(fiber.con_in + fiber.att_in)
|
||||
attenuation_in = db2lin(fiber.params.con_in + fiber.params.att_in)
|
||||
chan = []
|
||||
for carrier in carriers:
|
||||
pwr = carrier.power
|
||||
@@ -166,36 +30,32 @@ def propagate_raman_fiber(fiber, *carriers):
|
||||
carrier = carrier._replace(power=pwr)
|
||||
chan.append(carrier)
|
||||
carriers = tuple(f for f in chan)
|
||||
fiber_params = FiberParams(fiber)
|
||||
|
||||
# evaluate fiber attenuation involving also SRS if required by sim_params
|
||||
if 'raman_pumps' in fiber.operational:
|
||||
raman_pumps = tuple(pump(p['power'], p['frequency'], p['propagation_direction'])
|
||||
for p in fiber.operational['raman_pumps'])
|
||||
else:
|
||||
raman_pumps = None
|
||||
raman_solver = RamanSolver(raman_params=raman_params, fiber_params=fiber_params)
|
||||
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering(carriers=carriers,
|
||||
raman_pumps=raman_pumps)
|
||||
raman_solver = fiber.raman_solver
|
||||
raman_solver.carriers = carriers
|
||||
raman_solver.raman_pumps = fiber.raman_pumps
|
||||
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering
|
||||
|
||||
fiber_attenuation = (stimulated_raman_scattering.rho[:, -1])**-2
|
||||
if not raman_params.flag_raman:
|
||||
fiber_attenuation = tuple(fiber.lin_attenuation for _ in carriers)
|
||||
fiber_attenuation = tuple(fiber.params.lin_attenuation for _ in carriers)
|
||||
|
||||
# evaluate Raman ASE noise if required by sim_params and if raman pumps are present
|
||||
if raman_params.flag_raman and raman_pumps:
|
||||
if raman_params.flag_raman and fiber.raman_pumps:
|
||||
raman_ase = raman_solver.spontaneous_raman_scattering.power[:, -1]
|
||||
else:
|
||||
raman_ase = tuple(0 for _ in carriers)
|
||||
|
||||
# evaluate nli and propagate in fiber
|
||||
attenuation_out = db2lin(fiber.con_out)
|
||||
nli_solver = NliSolver(nli_params=nli_params, fiber_params=fiber_params)
|
||||
attenuation_out = db2lin(fiber.params.con_out)
|
||||
nli_solver = fiber.nli_solver
|
||||
nli_solver.stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
nli_frequencies = []
|
||||
computed_nli = []
|
||||
for carrier in (c for c in carriers if c.channel_number in sim_params.raman_computed_channels):
|
||||
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber_params)
|
||||
for carrier in (c for c in carriers if c.channel_number in sim_params.nli_params.computed_channels):
|
||||
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber)
|
||||
f_cut_resolution, f_pump_resolution, _, _ = resolution_param
|
||||
nli_params.f_cut_resolution = f_cut_resolution
|
||||
nli_params.f_pump_resolution = f_pump_resolution
|
||||
@@ -212,7 +72,8 @@ def propagate_raman_fiber(fiber, *carriers):
|
||||
new_carriers.append(carrier._replace(power=pwr))
|
||||
return new_carriers
|
||||
|
||||
def frequency_resolution(carrier, carriers, sim_params, fiber_params):
|
||||
|
||||
def frequency_resolution(carrier, carriers, sim_params, fiber):
|
||||
def _get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol):
|
||||
res_phi = _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol)
|
||||
res_k = _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol)
|
||||
@@ -228,10 +89,10 @@ def frequency_resolution(carrier, carriers, sim_params, fiber_params):
|
||||
|
||||
grid_size = sim_params.nli_params.wdm_grid_size
|
||||
delta_z = sim_params.raman_params.space_resolution
|
||||
alpha0 = fiber_params.alpha0()
|
||||
beta2 = fiber_params.beta2
|
||||
alpha0 = fiber.alpha0()
|
||||
beta2 = fiber.params.beta2
|
||||
k_tol = sim_params.nli_params.dispersion_tolerance
|
||||
phi_tol = sim_params.nli_params.phase_shift_tollerance
|
||||
phi_tol = sim_params.nli_params.phase_shift_tolerance
|
||||
f_pump_resolution, method_f_pump, res_dict_pump = \
|
||||
_get_freq_res_k_phi(0, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
|
||||
f_cut_resolution = {}
|
||||
@@ -247,6 +108,7 @@ def frequency_resolution(carrier, carriers, sim_params, fiber_params):
|
||||
res_dict_cut[delta_number] = res_dict
|
||||
return [f_cut_resolution, f_pump_resolution, (method_f_cut, method_f_pump), (res_dict_cut, res_dict_pump)]
|
||||
|
||||
|
||||
def raised_cosine_comb(f, *carriers):
|
||||
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
|
||||
channels at the input frequencies defined in array f
|
||||
@@ -270,30 +132,59 @@ def raised_cosine_comb(f, *carriers):
|
||||
np.where(tf > 0, 1., 0.) * np.where(np.abs(ff) <= stopband, 1., 0.)) + psd
|
||||
return psd
|
||||
|
||||
|
||||
class Simulation:
|
||||
_shared_dict = {}
|
||||
|
||||
def __init__(self):
|
||||
if type(self) == Simulation:
|
||||
raise NotImplementedError('Simulation cannot be instatiated')
|
||||
|
||||
@classmethod
|
||||
def set_params(cls, sim_params):
|
||||
cls._shared_dict['sim_params'] = sim_params
|
||||
|
||||
@classmethod
|
||||
def get_simulation(cls):
|
||||
self = cls.__new__(cls)
|
||||
return self
|
||||
|
||||
@property
|
||||
def sim_params(self):
|
||||
return self._shared_dict['sim_params']
|
||||
|
||||
|
||||
class SpontaneousRamanScattering:
|
||||
def __init__(self, frequency, z, power):
|
||||
self.frequency = frequency
|
||||
self.z = z
|
||||
self.power = power
|
||||
|
||||
|
||||
class StimulatedRamanScattering:
|
||||
def __init__(self, frequency, z, rho, power):
|
||||
self.frequency = frequency
|
||||
self.z = z
|
||||
self.rho = rho
|
||||
self.power = power
|
||||
|
||||
|
||||
class RamanSolver:
|
||||
def __init__(self, raman_params=None, fiber_params=None):
|
||||
""" Initialize the fiber object with its physical parameters
|
||||
:param length: fiber length in m.
|
||||
:param alphap: fiber power attenuation coefficient vs frequency in 1/m. numpy array
|
||||
:param freq_alpha: frequency axis of alphap in Hz. numpy array
|
||||
:param cr_raman: Raman efficiency vs frequency offset in 1/W/m. numpy array
|
||||
:param freq_cr: reference frequency offset axis for cr_raman. numpy array
|
||||
:param raman_params: namedtuple containing the solver parameters (optional).
|
||||
def __init__(self, fiber=None):
|
||||
""" Initialize the Raman solver object.
|
||||
:param fiber: instance of elements.py/Fiber.
|
||||
:param carriers: tuple of carrier objects
|
||||
:param raman_pumps: tuple containing pumps characteristics
|
||||
"""
|
||||
self.fiber_params = fiber_params
|
||||
self.raman_params = raman_params
|
||||
self._fiber = fiber
|
||||
self._carriers = None
|
||||
self._raman_pumps = None
|
||||
self._stimulated_raman_scattering = None
|
||||
self._spontaneous_raman_scattering = None
|
||||
|
||||
@property
|
||||
def fiber_params(self):
|
||||
return self._fiber_params
|
||||
|
||||
@fiber_params.setter
|
||||
def fiber_params(self, fiber_params):
|
||||
self._stimulated_raman_scattering = None
|
||||
self._fiber_params = fiber_params
|
||||
def fiber(self):
|
||||
return self._fiber
|
||||
|
||||
@property
|
||||
def carriers(self):
|
||||
@@ -301,11 +192,8 @@ class RamanSolver:
|
||||
|
||||
@carriers.setter
|
||||
def carriers(self, carriers):
|
||||
"""
|
||||
:param carriers: tuple of namedtuples containing information about carriers
|
||||
:return:
|
||||
"""
|
||||
self._carriers = carriers
|
||||
self._spontaneous_raman_scattering = None
|
||||
self._stimulated_raman_scattering = None
|
||||
|
||||
@property
|
||||
@@ -318,62 +206,44 @@ class RamanSolver:
|
||||
self._stimulated_raman_scattering = None
|
||||
|
||||
@property
|
||||
def raman_params(self):
|
||||
return self._raman_params
|
||||
|
||||
@raman_params.setter
|
||||
def raman_params(self, raman_params):
|
||||
"""
|
||||
:param raman_params: namedtuple containing the solver parameters (optional).
|
||||
:return:
|
||||
"""
|
||||
self._raman_params = raman_params
|
||||
self._stimulated_raman_scattering = None
|
||||
self._spontaneous_raman_scattering = None
|
||||
def stimulated_raman_scattering(self):
|
||||
if self._stimulated_raman_scattering is None:
|
||||
self.calculate_stimulated_raman_scattering(self.carriers, self.raman_pumps)
|
||||
return self._stimulated_raman_scattering
|
||||
|
||||
@property
|
||||
def spontaneous_raman_scattering(self):
|
||||
if self._spontaneous_raman_scattering is None:
|
||||
# SET STUFF
|
||||
loss_coef = self.fiber_params.loss_coef
|
||||
raman_efficiency = self.fiber_params.raman_efficiency
|
||||
temperature = self.fiber_params.temperature
|
||||
carriers = self.carriers
|
||||
raman_pumps = self.raman_pumps
|
||||
|
||||
logger.debug('Start computing fiber Spontaneous Raman Scattering')
|
||||
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
|
||||
|
||||
if not hasattr(loss_coef, 'alpha_power'):
|
||||
alphap_fiber = loss_coef * np.ones(freq_array.shape)
|
||||
else:
|
||||
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
|
||||
alphap_fiber = interp_alphap(freq_array)
|
||||
|
||||
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
|
||||
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
||||
cr = interp_cr(freq_diff)
|
||||
|
||||
# z propagation axis
|
||||
z_array = self._stimulated_raman_scattering.z
|
||||
ase_bc = np.zeros(freq_array.shape)
|
||||
|
||||
# calculate ase power
|
||||
spontaneous_raman_scattering = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
|
||||
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
|
||||
bn_array, temperature)
|
||||
|
||||
setattr(spontaneous_raman_scattering, 'frequency', freq_array)
|
||||
setattr(spontaneous_raman_scattering, 'z', z_array)
|
||||
setattr(spontaneous_raman_scattering, 'power', spontaneous_raman_scattering.x)
|
||||
delattr(spontaneous_raman_scattering, 'x')
|
||||
|
||||
logger.debug(spontaneous_raman_scattering.message)
|
||||
|
||||
self._spontaneous_raman_scattering = spontaneous_raman_scattering
|
||||
|
||||
self.calculate_spontaneous_raman_scattering(self.carriers, self.raman_pumps)
|
||||
return self._spontaneous_raman_scattering
|
||||
|
||||
def calculate_spontaneous_raman_scattering(self, carriers, raman_pumps):
|
||||
raman_efficiency = self.fiber.params.raman_efficiency
|
||||
temperature = self.fiber.operational['temperature']
|
||||
|
||||
logger.debug('Start computing fiber Spontaneous Raman Scattering')
|
||||
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
|
||||
|
||||
alphap_fiber = self.fiber.alpha(freq_array)
|
||||
|
||||
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
|
||||
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
||||
cr = interp_cr(freq_diff)
|
||||
|
||||
# z propagation axis
|
||||
z_array = self.stimulated_raman_scattering.z
|
||||
ase_bc = np.zeros(freq_array.shape)
|
||||
|
||||
# calculate ase power
|
||||
int_spontaneous_raman = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
|
||||
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
|
||||
bn_array, temperature)
|
||||
|
||||
spontaneous_raman_scattering = SpontaneousRamanScattering(freq_array, z_array, int_spontaneous_raman.x)
|
||||
logger.debug("Spontaneous Raman Scattering evaluated successfully")
|
||||
self._spontaneous_raman_scattering = spontaneous_raman_scattering
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _compute_power_spectrum(carriers, raman_pumps=None):
|
||||
"""
|
||||
@@ -412,10 +282,14 @@ class RamanSolver:
|
||||
|
||||
return pow_array, f_array, propagation_direction, noise_bandwidth_array
|
||||
|
||||
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array, cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
|
||||
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array,
|
||||
cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
|
||||
spontaneous_raman_scattering = OptimizeResult()
|
||||
|
||||
dx = self.raman_params.space_resolution
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
|
||||
dx = sim_params.raman_params.space_resolution
|
||||
h = ph.value('Planck constant')
|
||||
kb = ph.value('Boltzmann constant')
|
||||
|
||||
@@ -428,12 +302,14 @@ class RamanSolver:
|
||||
eta = 1/(np.exp((h*freq_diff[f_ind, f_ind+1:])/(kb*temperature)) - 1)
|
||||
|
||||
int_fiber_loss = -alphap_fiber[f_ind] * z_array
|
||||
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(), axis=0)
|
||||
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(),
|
||||
axis=0)
|
||||
int_raman_gain = np.sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
|
||||
|
||||
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
|
||||
|
||||
new_ase = np.sum((cr_raman[f_ind+1:] * (1 + eta) * raman_matrix[f_ind+1:, :].transpose()).transpose() * h * f_ase * bn_array[f_ind], axis=0)
|
||||
new_ase = np.sum((cr_raman[f_ind+1:] * (1 + eta) * raman_matrix[f_ind+1:, :].transpose()).transpose()
|
||||
* h * f_ase * bn_array[f_ind], axis=0)
|
||||
|
||||
bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
|
||||
ase_evolution = np.exp(int_gain_loss) * cumtrapz(new_ase*np.exp(-int_gain_loss), z_array, dx=dx, initial=0)
|
||||
@@ -441,69 +317,51 @@ class RamanSolver:
|
||||
power_ase[f_ind, :] = bc_evolution + ase_evolution
|
||||
|
||||
spontaneous_raman_scattering.x = 2 * power_ase
|
||||
spontaneous_raman_scattering.success = True
|
||||
spontaneous_raman_scattering.message = "Spontaneous Raman Scattering evaluated successfully"
|
||||
|
||||
return spontaneous_raman_scattering
|
||||
|
||||
def stimulated_raman_scattering(self, carriers, raman_pumps=None):
|
||||
def calculate_stimulated_raman_scattering(self, carriers, raman_pumps):
|
||||
""" Returns stimulated Raman scattering solution including
|
||||
fiber gain/loss profile.
|
||||
:return: self._stimulated_raman_scattering: the SRS problem solution.
|
||||
scipy.interpolate.PPoly instance
|
||||
:return: None
|
||||
"""
|
||||
# fiber parameters
|
||||
fiber_length = self.fiber.params.length
|
||||
loss_coef = self.fiber.params.lin_loss_exp
|
||||
raman_efficiency = self.fiber.params.raman_efficiency
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
|
||||
if self._stimulated_raman_scattering is None:
|
||||
# fiber parameters
|
||||
fiber_length = self.fiber_params.length
|
||||
loss_coef = self.fiber_params.loss_coef
|
||||
if self.raman_params.flag_raman:
|
||||
raman_efficiency = self.fiber_params.raman_efficiency
|
||||
else:
|
||||
raman_efficiency = self.fiber_params.raman_efficiency
|
||||
raman_efficiency['cr'] = np.array(raman_efficiency['cr']) * 0
|
||||
# raman solver parameters
|
||||
z_resolution = self.raman_params.space_resolution
|
||||
tolerance = self.raman_params.tolerance
|
||||
if not sim_params.raman_params.flag_raman:
|
||||
raman_efficiency['cr'] = np.zeros(len(raman_efficiency['cr']))
|
||||
# raman solver parameters
|
||||
z_resolution = sim_params.raman_params.space_resolution
|
||||
tolerance = sim_params.raman_params.tolerance
|
||||
|
||||
logger.debug('Start computing fiber Stimulated Raman Scattering')
|
||||
logger.debug('Start computing fiber Stimulated Raman Scattering')
|
||||
|
||||
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
|
||||
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
|
||||
|
||||
if not hasattr(loss_coef, 'alpha_power'):
|
||||
alphap_fiber = loss_coef * np.ones(freq_array.shape)
|
||||
else:
|
||||
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
|
||||
alphap_fiber = interp_alphap(freq_array)
|
||||
alphap_fiber = self.fiber.alpha(freq_array)
|
||||
|
||||
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
|
||||
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
||||
cr = interp_cr(freq_diff)
|
||||
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
|
||||
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
||||
cr = interp_cr(freq_diff)
|
||||
|
||||
# z propagation axis
|
||||
z = np.arange(0, fiber_length+1, z_resolution)
|
||||
# z propagation axis
|
||||
z = np.arange(0, fiber_length + 1, z_resolution)
|
||||
|
||||
ode_function = lambda z, p: self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
|
||||
boundary_residual = lambda ya, yb: self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
|
||||
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
|
||||
ode_function = lambda z, p: self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
|
||||
boundary_residual = lambda ya, yb: self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
|
||||
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
|
||||
|
||||
# ODE SOLVER
|
||||
stimulated_raman_scattering = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance)
|
||||
# ODE SOLVER
|
||||
bvp_solution = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance)
|
||||
|
||||
rho = (stimulated_raman_scattering.y.transpose() / power_spectrum).transpose()
|
||||
rho = np.sqrt(rho) # From power attenuation to field attenuation
|
||||
setattr(stimulated_raman_scattering, 'frequency', freq_array)
|
||||
setattr(stimulated_raman_scattering, 'z', stimulated_raman_scattering.x)
|
||||
setattr(stimulated_raman_scattering, 'rho', rho)
|
||||
setattr(stimulated_raman_scattering, 'power', stimulated_raman_scattering.y)
|
||||
delattr(stimulated_raman_scattering, 'x')
|
||||
delattr(stimulated_raman_scattering, 'y')
|
||||
rho = (bvp_solution.y.transpose() / power_spectrum).transpose()
|
||||
rho = np.sqrt(rho) # From power attenuation to field attenuation
|
||||
stimulated_raman_scattering = StimulatedRamanScattering(freq_array, bvp_solution.x, rho, bvp_solution.y)
|
||||
|
||||
self.carriers = carriers
|
||||
self.raman_pumps = raman_pumps
|
||||
self._stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
return self._stimulated_raman_scattering
|
||||
self._stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
def _residuals_stimulated_raman(self, ya, yb, power_spectrum, prop_direct):
|
||||
|
||||
@@ -520,11 +378,14 @@ class RamanSolver:
|
||||
def _initial_guess_stimulated_raman(self, z, power_spectrum, alphap_fiber, prop_direct):
|
||||
""" Computes the initial guess knowing the boundary conditions
|
||||
:param z: patial axis [m]. numpy array
|
||||
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array
|
||||
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array
|
||||
:param power_spectrum: power in each frequency slice [W].
|
||||
Frequency axis is defined by freq_array. numpy array
|
||||
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m].
|
||||
Frequency defined by freq_array. numpy array
|
||||
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
|
||||
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array
|
||||
:return: power_guess: guess on the initial conditions [W]. The first ndarray index identifies the frequency slice,
|
||||
:return: power_guess: guess on the initial conditions [W].
|
||||
The first ndarray index identifies the frequency slice,
|
||||
the second ndarray index identifies the step in z. ndarray
|
||||
"""
|
||||
|
||||
@@ -538,14 +399,19 @@ class RamanSolver:
|
||||
return power_guess
|
||||
|
||||
def _ode_stimulated_raman(self, z, power_spectrum, alphap_fiber, freq_array, cr_raman_matrix, prop_direct):
|
||||
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs) describing the Raman effect.
|
||||
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs)
|
||||
describing the Raman effect.
|
||||
:param z: spatial axis (unused).
|
||||
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array. Size n
|
||||
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array. Size n
|
||||
:param power_spectrum: power in each frequency slice [W].
|
||||
Frequency axis is defined by freq_array. numpy array. Size n
|
||||
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m].
|
||||
Frequency defined by freq_array. numpy array. Size n
|
||||
:param freq_array: reference frequency axis [Hz]. numpy array. Size n
|
||||
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m]. Frequency defined by freq_array. numpy ndarray. Size nxn
|
||||
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m].
|
||||
Frequency defined by freq_array. numpy ndarray. Size nxn
|
||||
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
|
||||
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array. Size n
|
||||
+1 for forward propagation and -1 for backward propagation.
|
||||
Frequency defined by freq_array. numpy array. Size n
|
||||
:return: dP/dz: the power variation in dz [W/m]. numpy array. Size n
|
||||
"""
|
||||
|
||||
@@ -563,28 +429,24 @@ class RamanSolver:
|
||||
|
||||
return np.vstack(dpdz)
|
||||
|
||||
|
||||
class NliSolver:
|
||||
""" This class implements the NLI models.
|
||||
Model and method can be specified in `self.nli_params.method`.
|
||||
Model and method can be specified in `sim_params.nli_params.method`.
|
||||
List of implemented methods:
|
||||
'gn_model_analytic': brute force triple integral solution
|
||||
'ggn_spectrally_separated_xpm_spm': XPM plus SPM
|
||||
"""
|
||||
|
||||
def __init__(self, nli_params=None, fiber_params=None):
|
||||
""" Initialize the fiber object with its physical parameters
|
||||
def __init__(self, fiber=None):
|
||||
""" Initialize the Nli solver object.
|
||||
:param fiber: instance of elements.py/Fiber.
|
||||
"""
|
||||
self.fiber_params = fiber_params
|
||||
self.nli_params = nli_params
|
||||
self.stimulated_raman_scattering = None
|
||||
self._fiber = fiber
|
||||
self._stimulated_raman_scattering = None
|
||||
|
||||
@property
|
||||
def fiber_params(self):
|
||||
return self._fiber_params
|
||||
|
||||
@fiber_params.setter
|
||||
def fiber_params(self, fiber_params):
|
||||
self._fiber_params = fiber_params
|
||||
def fiber(self):
|
||||
return self._fiber
|
||||
|
||||
@property
|
||||
def stimulated_raman_scattering(self):
|
||||
@@ -594,28 +456,19 @@ class NliSolver:
|
||||
def stimulated_raman_scattering(self, stimulated_raman_scattering):
|
||||
self._stimulated_raman_scattering = stimulated_raman_scattering
|
||||
|
||||
@property
|
||||
def nli_params(self):
|
||||
return self._nli_params
|
||||
|
||||
@nli_params.setter
|
||||
def nli_params(self, nli_params):
|
||||
"""
|
||||
:param model_params: namedtuple containing the parameters used to compute the NLI.
|
||||
"""
|
||||
self._nli_params = nli_params
|
||||
|
||||
def compute_nli(self, carrier, *carriers):
|
||||
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
|
||||
at the end of the fiber span.
|
||||
"""
|
||||
if 'gn_model_analytic' == self.nli_params.nli_method_name.lower():
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
if 'gn_model_analytic' == sim_params.nli_params.nli_method_name.lower():
|
||||
carrier_nli = self._gn_analytic(carrier, *carriers)
|
||||
elif 'ggn_spectrally_separated' in self.nli_params.nli_method_name.lower():
|
||||
elif 'ggn_spectrally_separated' in sim_params.nli_params.nli_method_name.lower():
|
||||
eta_matrix = self._compute_eta_matrix(carrier, *carriers)
|
||||
carrier_nli = self._carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers)
|
||||
else:
|
||||
raise ValueError(f'Method {self.nli_params.method_nli} not implemented.')
|
||||
raise ValueError(f'Method {sim_params.nli_params.method_nli} not implemented.')
|
||||
|
||||
return carrier_nli
|
||||
|
||||
@@ -632,6 +485,8 @@ class NliSolver:
|
||||
|
||||
def _compute_eta_matrix(self, carrier_cut, *carriers):
|
||||
cut_index = carrier_cut.channel_number - 1
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
# Matrix initialization
|
||||
matrix_size = max(carriers, key=lambda x: getattr(x, 'channel_number')).channel_number
|
||||
eta_matrix = np.zeros(shape=(matrix_size, matrix_size))
|
||||
@@ -639,10 +494,10 @@ class NliSolver:
|
||||
# SPM
|
||||
logger.debug(f'Start computing SPM on channel #{carrier_cut.channel_number}')
|
||||
# SPM GGN
|
||||
if 'ggn' in self.nli_params.nli_method_name.lower():
|
||||
if 'ggn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._generalized_spectrally_separated_spm(carrier_cut)
|
||||
# SPM GN
|
||||
elif 'gn' in self.nli_params.nli_method_name.lower():
|
||||
elif 'gn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._gn_analytic(carrier_cut, *[carrier_cut])
|
||||
eta_matrix[cut_index, cut_index] = partial_nli / (carrier_cut.power.signal**3)
|
||||
|
||||
@@ -653,10 +508,10 @@ class NliSolver:
|
||||
logger.debug(f'Start computing XPM on channel #{carrier_cut.channel_number} '
|
||||
f'from channel #{pump_carrier.channel_number}')
|
||||
# XPM GGN
|
||||
if 'ggn' in self.nli_params.nli_method_name.lower():
|
||||
if 'ggn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._generalized_spectrally_separated_xpm(carrier_cut, pump_carrier)
|
||||
# XPM GGN
|
||||
elif 'gn' in self.nli_params.nli_method_name.lower():
|
||||
elif 'gn' in sim_params.nli_params.nli_method_name.lower():
|
||||
partial_nli = self._gn_analytic(carrier_cut, *[pump_carrier])
|
||||
eta_matrix[pump_index, pump_index] = partial_nli /\
|
||||
(carrier_cut.power.signal * pump_carrier.power.signal**2)
|
||||
@@ -670,47 +525,51 @@ class NliSolver:
|
||||
:param carriers: the full WDM comb
|
||||
:return: carrier_nli: the amount of nonlinear interference in W on the carrier under analysis
|
||||
"""
|
||||
alpha = self.fiber_params.alpha0() / 2
|
||||
beta2 = self.fiber_params.beta2
|
||||
gamma = self.fiber_params.gamma
|
||||
length = self.fiber_params.length
|
||||
effective_length = (1 - np.exp(-2 * alpha * length)) / (2 * alpha)
|
||||
asymptotic_length = 1 / (2 * alpha)
|
||||
beta2 = self.fiber.params.beta2
|
||||
gamma = self.fiber.params.gamma
|
||||
effective_length = self.fiber.params.effective_length
|
||||
asymptotic_length = self.fiber.params.asymptotic_length
|
||||
|
||||
g_nli = 0
|
||||
for interfering_carrier in carriers:
|
||||
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
|
||||
g_signal = carrier.power.signal / carrier.baud_rate
|
||||
g_nli += g_interfearing**2 * g_signal \
|
||||
* _psi(carrier, interfering_carrier, beta2=self.fiber_params.beta2, asymptotic_length=1/self.fiber_params.alpha0())
|
||||
g_nli *= (16.0 / 27.0) * (gamma * effective_length)**2 /\
|
||||
* _psi(carrier, interfering_carrier, beta2=beta2, asymptotic_length=asymptotic_length)
|
||||
g_nli *= (16.0 / 27.0) * (gamma * effective_length) ** 2 /\
|
||||
(2 * np.pi * abs(beta2) * asymptotic_length)
|
||||
carrier_nli = carrier.baud_rate * g_nli
|
||||
return carrier_nli
|
||||
|
||||
# Methods for computing the GGN-model
|
||||
def _generalized_spectrally_separated_spm(self, carrier):
|
||||
f_cut_resolution = self.nli_params.f_cut_resolution['delta_0']
|
||||
gamma = self.fiber.params.gamma
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
f_cut_resolution = sim_params.nli_params.f_cut_resolution['delta_0']
|
||||
f_eval = carrier.frequency
|
||||
g_cut = (carrier.power.signal / carrier.baud_rate)
|
||||
|
||||
spm_nli = carrier.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_cut**3 * \
|
||||
spm_nli = carrier.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_cut ** 3 * \
|
||||
self._generalized_psi(carrier, carrier, f_eval, f_cut_resolution, f_cut_resolution)
|
||||
return spm_nli
|
||||
|
||||
def _generalized_spectrally_separated_xpm(self, carrier_cut, pump_carrier):
|
||||
gamma = self.fiber.params.gamma
|
||||
simulation = Simulation.get_simulation()
|
||||
sim_params = simulation.sim_params
|
||||
delta_index = pump_carrier.channel_number - carrier_cut.channel_number
|
||||
f_cut_resolution = self.nli_params.f_cut_resolution[f'delta_{delta_index}']
|
||||
f_pump_resolution = self.nli_params.f_pump_resolution
|
||||
f_cut_resolution = sim_params.nli_params.f_cut_resolution[f'delta_{delta_index}']
|
||||
f_pump_resolution = sim_params.nli_params.f_pump_resolution
|
||||
f_eval = carrier_cut.frequency
|
||||
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
|
||||
g_cut = (carrier_cut.power.signal / carrier_cut.baud_rate)
|
||||
frequency_offset_threshold = self._frequency_offset_threshold(pump_carrier.baud_rate)
|
||||
if abs(carrier_cut.frequency - pump_carrier.frequency) <= frequency_offset_threshold:
|
||||
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_pump**2 * g_cut * \
|
||||
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_pump**2 * g_cut * \
|
||||
2 * self._generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
|
||||
else:
|
||||
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_pump**2 * g_cut * \
|
||||
xpm_nli = carrier_cut.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_pump**2 * g_cut * \
|
||||
2 * self._fast_generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution)
|
||||
return xpm_nli
|
||||
|
||||
@@ -719,10 +578,10 @@ class NliSolver:
|
||||
:return: generalized_psi
|
||||
"""
|
||||
# Fiber parameters
|
||||
alpha0 = self.fiber_params.alpha0(f_eval)
|
||||
beta2 = self.fiber_params.beta2
|
||||
beta3 = self.fiber_params.beta3
|
||||
f_ref_beta = self.fiber_params.f_ref_beta
|
||||
alpha0 = self.fiber.alpha0(f_eval)
|
||||
beta2 = self.fiber.params.beta2
|
||||
beta3 = self.fiber.params.beta3
|
||||
f_ref_beta = self.fiber.params.ref_frequency
|
||||
z = self.stimulated_raman_scattering.z
|
||||
frequency_rho = self.stimulated_raman_scattering.frequency
|
||||
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
|
||||
@@ -752,10 +611,10 @@ class NliSolver:
|
||||
:return: generalized_psi
|
||||
"""
|
||||
# Fiber parameters
|
||||
alpha0 = self.fiber_params.alpha0(f_eval)
|
||||
beta2 = self.fiber_params.beta2
|
||||
beta3 = self.fiber_params.beta3
|
||||
f_ref_beta = self.fiber_params.f_ref_beta
|
||||
alpha0 = self.fiber.alpha0(f_eval)
|
||||
beta2 = self.fiber.params.beta2
|
||||
beta3 = self.fiber.params.beta3
|
||||
f_ref_beta = self.fiber.params.ref_frequency
|
||||
z = self.stimulated_raman_scattering.z
|
||||
frequency_rho = self.stimulated_raman_scattering.frequency
|
||||
rho_norm = self.stimulated_raman_scattering.rho * np.exp(np.abs(alpha0) * z / 2)
|
||||
@@ -803,7 +662,8 @@ class NliSolver:
|
||||
beta2_ref = 21.3e-27
|
||||
delta_f_ref = 50e9
|
||||
rs_ref = 32e9
|
||||
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (self.fiber_params.beta2 * symbol_rate)
|
||||
beta2 = self.fiber.params.beta2
|
||||
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (beta2 * symbol_rate)
|
||||
return freq_offset_th
|
||||
|
||||
def _psi(carrier, interfering_carrier, beta2, asymptotic_length):
|
||||
|
||||
Reference in New Issue
Block a user