Creation of the OMS structure to record spectrum assignment

oms_list contains the list of OMS and each OMS contains the list
of uid of each crossed elements (ordered)
each element is updated with the oms_id to which it belongs
each oms contains a bitmap with frequency slots according to
frequency min max defined in eqpt_config.json (SI) and in case oms
are defined elsewhere, there is an alignment of grids to ease computation
the build_OMS_list function builds the OMS list and implements oms attributes
in all network elements
Commit also contains basic functions to handle spectrum bitmap and indexes

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
This commit is contained in:
EstherLerouzic
2019-08-27 18:05:15 +01:00
parent 87cc3dac00
commit 81f88e78c7
2 changed files with 328 additions and 0 deletions

View File

@@ -0,0 +1,326 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.spectrum_assignment
=============================
This module contains the Oms and Bitmap classes and the different method to
select and assign spectrum. Spectrum_selection function identifies the free
slots and select_candidate selects the candidate spectrum according to
strategy: for example first fit
oms records its elements, and elements are updated with an oms to have
element/oms correspondace
"""
from collections import namedtuple
from logging import getLogger
from math import ceil
from gnpy.core.elements import Roadm, Transceiver
LOGGER = getLogger(__name__)
class Bitmap:
""" records the spectrum occupation
"""
def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None):
# n is the min index including guardband. Guardband is require to be sure
# that a channel can be assigned with center frequency fmin (means that its
# slot occupation goes below freq_index_min
n_min = frequency_to_n(f_min-guardband, grid)
n_max = frequency_to_n(f_max+guardband, grid) - 1
self.n_min = n_min
self.n_max = n_max
self.freq_index_min = frequency_to_n(f_min)
self.freq_index_max = frequency_to_n(f_max)
self.freq_index = list(range(n_min, n_max+1))
if bitmap is None:
self.bitmap = [1] * (n_max-n_min+1)
else:
if len(bitmap) == len(self.freq_index):
self.bitmap = bitmap
else:
msg = f'bitmap is not consistant with f_min{f_min} - n :' +\
f'{n_min} and f_max{f_max}- n :{n_max}'
LOGGER.critical(msg)
exit()
def getn(self, i):
""" converts the n (itu grid) into a local index
"""
return self.freq_index[i]
def geti(self, nvalue):
""" converts the local index into n (itu grid)
"""
return self.freq_index.index(nvalue)
def insert_left(self, newbitmap):
""" insert bitmap on the left to align oms bitmaps if their start frequencies are different
"""
self.bitmap = newbitmap + self.bitmap
temp = list(range(self.n_min-len(newbitmap), self.n_min))
self.freq_index = temp + self.freq_index
self.n_min = self.freq_index[0]
def insert_right(self, newbitmap):
""" insert bitmap on the right to align oms bitmaps if their stop frequencies are different
"""
self.bitmap = self.bitmap + newbitmap
self.freq_index = self.freq_index + list(range(self.n_max, self.n_max+len(newbitmap)))
self.n_max = self.freq_index[-1]
# +'grid available_slots f_min f_max services_list')
OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list')
class OMS:
""" OMS class is the logical container that represent a link betwoeen two adjacent ROADMs and
records the crossed elements and the occupied spectrum
"""
def __init__(self, *args, **params):
params = OMSParams(**params)
self.oms_id = params.oms_id
self.el_id_list = params.el_id_list
self.el_list = params.el_list
self.spectrum_bitmap = []
def __str__(self):
return '\n\t'.join([f'{type(self).__name__} {self.oms_id}',
f'{self.el_id_list[0]} - {self.el_id_list[-1]}'])
def __repr__(self):
return '\n\t'.join([f'{type(self).__name__} {self.oms_id}',
f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n'])
def add_element(self, el):
self.el_id_list.append(el.uid)
self.el_list.append(el)
def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None,
grid=0.00625e12):
""" frequencies expressed in Hz
"""
if existing_spectrum is None:
# add some 150 GHz margin to eable a center channel on f_min
# use ITU-T G694.1
# Flexible DWDM grid definition
# For the flexible DWDM grid, the allowed frequency slots have a nominal
# central frequency (in THz) defined by:
# 193.1 + n × 0.00625 where n is a positive or negative integer including 0
# and 0.00625 is the nominal central frequency granularity in THz
# and a slot width defined by:
# 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in
# GHz.
# Any combination of frequency slots is allowed as long as no two frequency
# slots overlap.
# TODO : add explaination on that / parametrize ....
self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband)
# print(len(self.spectrum_bitmap.bitmap))
def assign_spectrum(self, nvalue, mvalue):
""" change oms spectrum to mark spectrum assigned
"""
# print("assign_spectrum")
# print(f'n , m :{n},{m}')
if (nvalue is None or mvalue is None or isinstance(nvalue, float)
or isinstance(mvalue, float) or mvalue == 0):
msg = f'could not assign None values'
LOGGER.critical(msg)
exit()
startn, stopn = mvalue_to_slots(nvalue, mvalue)
# print(f'startn stop n {startn} , {stopn}')
# assumes that guardbands are sufficient to ensure that assigning a center channel
# at fmin or fmax is OK is startn > self.spectrum_bitmap.n_min
if (nvalue <= self.spectrum_bitmap.freq_index_max and
nvalue >= self.spectrum_bitmap.freq_index_min and
stopn <= self.spectrum_bitmap.n_max and
startn > self.spectrum_bitmap.n_min):
# verification that both length are identical
self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn)+1] = [0] * (stopn-startn+1)
return True
else:
msg = f'Could not assign n {nvalue}, m {mvalue} values:' +\
f' one or several slots are not available'
LOGGER.info(msg)
return False
def frequency_to_n(freq, grid=0.00625e12):
""" converts frequency into the n value (ITU grid)
"""
return (int)((freq-193.1e12)/grid)
def nvalue_to_frequency(nvalue, grid=0.00625e12):
""" converts n value into a frequency
"""
return 193.1e12 + nvalue * grid
def mvalue_to_slots(nvalue, mvalue):
""" convert center n an m into start and stop n
"""
startn = nvalue - mvalue
stopn = nvalue + mvalue -1
return startn, stopn
def slots_to_m(startn, stopn):
""" converts the start and stop n values to the center n and m value
"""
nvalue = (int)((startn+stopn+1)/2)
mvalue = (int)((stopn-startn+1)/2)
return nvalue, mvalue
def m_to_freq(nvalue, mvalue, grid=0.00625e12):
""" converts m into frequency range
"""
startn, stopn = mvalue_to_slots(nvalue, mvalue)
fstart = nvalue_to_frequency(startn, grid)
fstop = nvalue_to_frequency(stopn+1, grid)
return fstart, fstop
def align_grids(oms_list):
""" used to apply same grid to all oms : same starting n, stop n and slot size
out of grid slots are set to 0
"""
n_min = min([o.spectrum_bitmap.n_min for o in oms_list])
n_max = max([o.spectrum_bitmap.n_max for o in oms_list])
for this_o in oms_list:
if (this_o.spectrum_bitmap.n_min - n_min) > 0:
this_o.spectrum_bitmap.insert_left([0] * (this_o.spectrum_bitmap.n_min - n_min))
if (n_max - this_o.spectrum_bitmap.n_max) > 0:
this_o.spectrum_bitmap.insert_right([0] * (n_max - this_o.spectrum_bitmap.n_max))
return oms_list
def build_oms_list(network, equipment):
""" initialization of OMS list in the network
an oms is build reading all intermediate nodes between two adjacent ROADMs
each element within the list is being added an oms and oms_id to record the
oms it belongs to.
the function supports different spectrum width and supposes that the whole network
works with the min range among OMSs
"""
oms_id = 0
oms_list = []
for node in [n for n in network.nodes() if isinstance(n, Roadm)]:
for edge in network.edges([node]):
if not isinstance(edge[1], Transceiver):
nd_in = edge[0] # nd_in is a Roadm
try:
nd_in.oms_list.append(oms_id)
except AttributeError:
nd_in.oms_list = []
nd_in.oms_list.append(oms_id)
nd_out = edge[1]
params = {}
params['oms_id'] = oms_id
params['el_id_list'] = []
params['el_list'] = []
oms = OMS(**params)
oms.add_element(nd_in)
while not isinstance(nd_out, Roadm):
oms.add_element(nd_out)
# add an oms_id in the element
nd_out.oms_id = oms_id
nd_out.oms = oms
n_temp = nd_out
nd_out = next(n[1] for n in network.edges([n_temp]) if n[1].uid != nd_in.uid)
nd_in = n_temp
oms.add_element(nd_out)
# nd_out is a Roadm
try:
nd_out.oms_list.append(oms_id)
except AttributeError:
nd_out.oms_list = []
nd_out.oms_list.append(oms_id)
# print(f'coucou2 {oms.oms_id} {oms.el_id_list[0]} {oms.el_id_list[-1]}')
# for e in oms.el_id_list:
# print(f' {e}')
# TODO do not forget to correct next line !
# to test different grids
# TODO move this to test
if oms_id < 3:
oms.update_spectrum(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, grid=0.00625e12)
else:
oms.update_spectrum(equipment['SI']['default'].f_min,
equipment['SI']['default'].f_max, grid=0.00625e12)
# oms.assign_spectrum(13,7) gives back (193137500000000.0, 193225000000000.0)
# as in the example in the standard
# oms.assign_spectrum(13,7)
oms_list.append(oms)
oms_id += 1
oms_list = align_grids(oms_list)
return oms_list
def bitmap_sum(band1, band2):
""" a functions that marks occupied bitmap by 0 if the slot is occupied in band1 or in band2
"""
res = []
for i, elem in enumerate(band1):
if band2[i] * elem == 0:
res.append(0)
else:
res.append(1)
return res
def spectrum_selection(pth, oms_list, requested_m, requested_n=None):
""" collects spectrum availability and call the select_candidate function
# step 1 collects pth spectrum availability
# step 2 if n is not None try to assign the spectrum
# if the spectrum is not available then sends back an "error"
# if n is None selects candidate spectrum
# select spectrum that fits the policy ( first fit, random, ABP...)
# step3 returns the selection
"""
# use indexes instead of ITU-T n values
path_oms = []
for elem in pth:
if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver):
# only edfa, fused and fibers have oms_id attribute
path_oms.append(elem.oms_id)
# remove duplicate oms_id, order is not important
path_oms = list(set(path_oms))
# assuming all oms have same freq index
freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index
freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min
freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max
freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap
for oms in path_oms[1:]:
freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability)
if requested_n is None:
# avoid slots reserved on the edge 0.15e-12 on both sides -> 24
candidates = [(freq_index[i]+requested_m, freq_index[i], freq_index[i]+2*requested_m-1)
for i in range(len(freq_availability))
if freq_availability[i:i+2*requested_m] == [1] * (2*requested_m)
and freq_index[i] >= freq_index_min
and freq_index[i+2*requested_m-1] <= freq_index_max]
candidate = select_candidate(candidates, policy='first_fit')
else:
i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n)
# print(f'N {requested_n} i {i}')
# print(freq_availability[i-m:i+m] )
# print(freq_index[i-m:i+m])
if (freq_availability[i-requested_m:i+requested_m] == [1] * (2*requested_m) and
freq_index[i-requested_m] >= freq_index_min
and freq_index[i+requested_m-1] <= freq_index_max):
# candidate is the triplet center_n, startn and stopn
candidate = (requested_n, requested_n-requested_m, requested_n+requested_m-1)
else:
candidate = (None, None, None)
# print("coucou11")
# print(candidate)
# print(freq_availability[321:321+2*m])
# a = [i+321 for i in range(2*m)]
# print(a)
# print(candidate)
return candidate, path_oms
def select_candidate(candidates, policy):
""" selects a candidate among all available spectrum
"""
if policy == 'first_fit':
if candidates:
return candidates[0]
else:
return (None, None, None)