mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-11-02 02:57:52 +00:00
doc fixes
This commit is contained in:
16
docs/conf.py
16
docs/conf.py
@@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# GNpy documentation build configuration file, created by
|
||||
# gnpy documentation build configuration file, created by
|
||||
# sphinx-quickstart on Mon Dec 18 14:41:01 2017.
|
||||
#
|
||||
# This file is execfile()d with the current directory set to its
|
||||
@@ -47,8 +47,8 @@ source_suffix = ['.rst', '.md']
|
||||
master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = 'GNpy'
|
||||
copyright = '2017, Telecom InfraProject - OOPT PSE Group'
|
||||
project = 'gnpy'
|
||||
copyright = '2018, Telecom InfraProject - OOPT PSE Group'
|
||||
author = 'Telecom InfraProject - OOPT PSE Group'
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
@@ -120,7 +120,7 @@ html_sidebars = {
|
||||
# -- Options for HTMLHelp output ------------------------------------------
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'GNpydoc'
|
||||
htmlhelp_basename = 'gnpydoc'
|
||||
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
@@ -147,7 +147,7 @@ latex_elements = {
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'GNpy.tex', 'GNpy Documentation',
|
||||
(master_doc, 'gnpy.tex', 'gnpy Documentation',
|
||||
'Telecom InfraProject - OOPT PSE Group', 'manual'),
|
||||
]
|
||||
|
||||
@@ -157,7 +157,7 @@ latex_documents = [
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
(master_doc, 'gnpy', 'GNpy Documentation',
|
||||
(master_doc, 'gnpy', 'gnpy Documentation',
|
||||
[author], 1)
|
||||
]
|
||||
|
||||
@@ -168,8 +168,8 @@ man_pages = [
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
(master_doc, 'GNpy', 'GNpy Documentation',
|
||||
author, 'GNpy', 'One line description of project.',
|
||||
(master_doc, 'gnpy', 'gnpy Documentation',
|
||||
author, 'gnpy', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
|
||||
146
docs/model.rst
Normal file
146
docs/model.rst
Normal file
@@ -0,0 +1,146 @@
|
||||
The QoT estimation in the PSE framework of TIP-OOPT
|
||||
=======================================================
|
||||
|
||||
QoT-E including ASE noise and NLI accumulation
|
||||
----------------------------------------------
|
||||
|
||||
The operations of PSE simulative framework are based on the capability to
|
||||
estimate the QoT of one or more channels operating lightpaths over a given
|
||||
network route. For backbone transport networks, we can suppose that
|
||||
transceivers are operating polarization-division-multiplexed multilevel
|
||||
modulation formats with DSP-based coherent receivers, including equalization.
|
||||
For the optical links, we focus on state-of-the-art amplified and uncompensated
|
||||
fiber links, connecting network nodes including ROADMs, where add and drop
|
||||
operations on data traffic are performed. In such a transmission scenario, it
|
||||
is well accepted
|
||||
:cite:`vacondio_nonlinear_2012,bononi_modeling_2012,carena_modeling_2012,mecozzi_nonlinear_2012,secondini_analytical_2012,johannisson_perturbation_2013,dar_properties_2013,serena_alternative_2013,secondini_achievable_2013,poggiolini_gn-model_2014,dar_accumulation_2014,poggiolini_analytical_2011,savory_approximations_2013,bononi_single-_2013,johannisson_modeling_2014`
|
||||
to assume that transmission performances are limited by the amplified
|
||||
spontaneous emission (ASE) noise generated by optical amplifiers and and
|
||||
by nonlinear propagation effects: accumulation of a Gaussian disturbance
|
||||
defined as nonlinear interference (NLI) and generation of phase noise.
|
||||
State-of-the-art DSP in commercial transceivers are typically able to
|
||||
compensate for most of the phase noise through carrier-phase estimator
|
||||
(CPE) algorithms, for modulation formats with cardinality up to 16, per
|
||||
polarization state
|
||||
:cite:`poggiolini_recent_2017,schmidt_experimental_2015,fehenberger_experimental_2016`.
|
||||
So, for backbone networks covering medium-to-wide geographical areas, we
|
||||
can suppose that propagation is limited by the accumulation of two
|
||||
Gaussian disturbances: the ASE noise and the NLI. Additional impairments
|
||||
such as filtering effects introduced by ROADMs can be considered as
|
||||
additional equivalent power penalties depending on the ratio between the
|
||||
channel bandwidth and the ROADMs filters and the number of traversed
|
||||
ROADMs (hops) of the route under analysis. Modeling the two major
|
||||
sources of impairments as Gaussian disturbances, and being the receivers
|
||||
*coherent*, the unique QoT parameter determining the bit error rate
|
||||
(BER) for the considered transmission scenario is the generalized
|
||||
signal-to-noise ratio (SNR) defined as
|
||||
|
||||
.. math::
|
||||
|
||||
{\text{SNR}}= L_F \frac{P_{\text{ch}}}{P_{\text{ASE}}+P_{\text{NLI}}} = L_F \left(\frac{1}{{\text{SNR}}_{\text{LIN}}}+\frac{1}{{\text{SNR}}_{\text{NL}}}\right)^{-1}
|
||||
|
||||
|
||||
where :math:`P_{\text{ch}}` is the channel power,
|
||||
:math:`P_{\text{ASE}}` and :math:`P_{\text{NLI}}` are the power levels of the disturbances
|
||||
in the channel bandwidth for ASE noise and NLI, respectively.
|
||||
:math:`L_F` is a parameter assuming values smaller or equal than one
|
||||
that summarizes the equivalent power penalty loss such as
|
||||
filtering effects. Note that for state-of-the art equipment, filtering
|
||||
effects can be typically neglected over routes with few hops
|
||||
:cite:`rahman_mitigation_2014,foggi_overcoming_2015`.
|
||||
|
||||
To properly estimate :math:`P_{\text{ch}}` and :math:`P_{\text{ASE}}`
|
||||
the transmitted power at the beginning of the considered route must be
|
||||
known, and losses and amplifiers gain and noise figure, including their
|
||||
variation with frequency, must be characterized. So, the evaluation of
|
||||
:math:`{\text{SNR}}_{\text{LIN}}` *just* requires an accurate
|
||||
knowledge of equipment, which is not a trivial aspect, but it is not
|
||||
related to physical-model issues. For the evaluation of the NLI, several
|
||||
models have been proposed and validated in the technical literature
|
||||
:cite:`vacondio_nonlinear_2012,bononi_modeling_2012,carena_modeling_2012,mecozzi_nonlinear_2012,secondini_analytical_2012,johannisson_perturbation_2013,dar_properties_2013,serena_alternative_2013,secondini_achievable_2013,poggiolini_gn-model_2014,dar_accumulation_2014,poggiolini_analytical_2011,savory_approximations_2013,bononi_single-_2013,johannisson_modeling_2014`.
|
||||
The decision about which model to test within the PSE activities was
|
||||
driven by requirements of the entire PSE framework:
|
||||
|
||||
i. the model must be *local*, i.e., related individually to each network
|
||||
element (i.e. fiber span) generating NLI, independently of preceding and
|
||||
subsequent elements; and ii. the related computational time must be compatible
|
||||
with interactive operations.
|
||||
|
||||
So, the choice fell on the Gaussian Noise
|
||||
(GN) model with incoherent accumulation of NLI over fiber spans
|
||||
:cite:`poggiolini_gn-model_2014`. We implemented both the
|
||||
exact GN-model evaluation of NLI based on a double integral (Eq. (11) of
|
||||
:cite:`poggiolini_gn-model_2014`) and its analytical
|
||||
approximation (Eq. (120-121) of
|
||||
:cite:`poggiolini_analytical_2011`). We performed several
|
||||
validation analyses comparing results of the two implementations with
|
||||
split-step simulations over wide bandwidths
|
||||
:cite:`pilori_ffss_2017`, and results clearly showed that
|
||||
for fiber types with chromatic dispersion roughly larger than 4
|
||||
ps/nm/km, the analytical approximation ensures an excellent accuracy
|
||||
with a computational time compatible with real-time operations.
|
||||
|
||||
The Gaussian Noise Model to evaluate the NLI
|
||||
--------------------------------------------
|
||||
|
||||
As previously stated, fiber propagation of multilevel modulation formats
|
||||
relying on the polarization-division-multiplexing generates impairments that
|
||||
can be summarized as a disturbance called nonlinear interference (NLI), when
|
||||
exploiting a DSP-based coherent receiver, as in all state-of-the-art equipment.
|
||||
From a practical point of view, the NLI can be modeled as an additive Gaussian
|
||||
random process added by each fiber span, and whose strength depends on the cube
|
||||
of the input power spectral density and on the fiber-span parameters.
|
||||
|
||||
Since the introduction in the market in 2007 of the first transponder based on
|
||||
such a transmission technique, the scientific community has intensively worked
|
||||
to define the propagation behavior of such a trasnmission technique. First,
|
||||
the role of in-line chromatic dispersion compensation has been investigated,
|
||||
deducing that besides being not essential, it is indeed detrimental for
|
||||
performances :cite:`curri_dispersion_2008`. Then, it has been observed that
|
||||
the fiber propagation impairments are practically summarized by the sole NLI,
|
||||
being all the other phenomena compensated for by the blind equalizer
|
||||
implemented in the receiver DSP :cite:`carena_statistical_2010`. Once these
|
||||
assessments have been accepted by the community, several prestigious research
|
||||
groups have started to work on deriving analytical models able to estimating
|
||||
the NLI accumulation, and consequentially the generalized SNR that sets the
|
||||
BER, according to the transponder BER vs. SNR performance. Many models
|
||||
delivering different levels of accuracy have been developed and validated. As
|
||||
previously clarified, for the purposes of the PSE framework, the GN-model with
|
||||
incoherent accumulation of NLI over fiber spans has been selected as adequate.
|
||||
The reason for such a choice is first such a model being a "local" model, so
|
||||
related to each fiber spans, independently of the preceding and succeeding
|
||||
network elements. The other model characteristic driving the choice is the
|
||||
availability of a closed form for the model, so permitting a real-time
|
||||
evaluation, as required by the PSE framework. For a detailed derivation of the
|
||||
model, please refer to :cite:`poggiolini_analytical_2011`, while a qualitative
|
||||
description can be summarized as in the following. The GN-model assumes that
|
||||
the channel comb propagating in the fiber is well approximated by unpolarized
|
||||
spectrally shaped Gaussian noise. In such a scenario, supposing to rely - as in
|
||||
state-of-the-art equipment - on a receiver entirely compensating for linear
|
||||
propagation effects, propagation in the fiber only excites the four-wave mixing
|
||||
(FWM) process among the continuity of the tones occupying the bandwidth. Such a
|
||||
FWM generates an unpolarized complex Gaussian disturbance in each spectral slot
|
||||
that can be easily evaluated extending the FWM theory from a set of discrete
|
||||
tones - the standard FWM theory introduced back in the 90s by Inoue
|
||||
:cite:`Innoue-FWM`- to a continuity of tones, possibly spectrally shaped.
|
||||
Signals propagating in the fiber are not equivalent to Gaussian noise, but
|
||||
thanks to the absence of in-line compensation for choromatic dispersion, the
|
||||
become so, over short distances. So, the Gaussian noise model with incoherent
|
||||
accumulation of NLI has estensively proved to be a quick yet accurate and
|
||||
conservative tool to estimate propagation impairments of fiber propagation.
|
||||
Note that the GN-model has not been derived with the aim of an *exact*
|
||||
performance estimation, but to pursue a conservative performance prediction.
|
||||
So, considering these characteristics, and the fact that the NLI is always a
|
||||
secondary effect with respect to the ASE noise accumulation, and - most
|
||||
importantly - that typically linear propagation parameters (losses, gains and
|
||||
noise figures) are known within a variation range, a QoT estimator based on the
|
||||
GN model is adequate to deliver performance predictions in terms of a
|
||||
reasonable SNR range, rather than an exact value. As final remark, it must be
|
||||
clarified that the GN-model is adequate to be used when relying on a relatively
|
||||
narrow bandwidth up to few THz. When exceeding such a bandwidth occupation, the
|
||||
GN-model must be generalized introducing the interaction with the Stimulated
|
||||
Raman Scattering in order to give a proper estimation for all channels
|
||||
:cite:`cantono2018modeling`. This will be the main upgrade required within the
|
||||
PSE framework.
|
||||
|
||||
.. bibliography:: biblio.bib
|
||||
Reference in New Issue
Block a user