Introduce new parameter structure for all Fibers

The Polito team wanted to have a single object with all parameters
required for each `Fiber` instance -- apparently for better code
readability.

Signed-off-by: AndreaDAmico <andrea.damico@polito.it>
Co-authored-by: Alessio Ferrari <alessio.ferrari@polito.it>
Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
This commit is contained in:
AndreaDAmico
2019-12-16 18:37:46 +01:00
committed by Jan Kundrát
parent 8598e6591f
commit c41cddfff5

286
gnpy/core/parameters.py Normal file
View File

@@ -0,0 +1,286 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.parameters
==================
This module contains all parameters to configure standard network elements.
"""
from logging import getLogger
from scipy.constants import c, pi
from numpy import squeeze, log10, exp
from gnpy.core.units import UNITS
from gnpy.core.utils import db2lin
from gnpy.core.exceptions import ParametersError
logger = getLogger(__name__)
class Parameters:
def asdict(self):
class_dict = self.__class__.__dict__
instance_dict = self.__dict__
new_dict = {}
for key in class_dict:
if isinstance(class_dict[key],property):
new_dict[key] = instance_dict['_' + key]
return new_dict
class PumpParams(Parameters):
def __init__(self, power, frequency, propagation_direction):
self._power = power
self._frequency = frequency
self._propagation_direction = propagation_direction
@property
def power(self):
return self._power
@property
def frequency(self):
return self._frequency
@property
def propagation_direction(self):
return self._propagation_direction
class RamanParams(Parameters):
def __init__(self, **kwargs):
self._flag_raman = kwargs['flag_raman']
self._space_resolution = kwargs['space_resolution'] if 'space_resolution' in kwargs else None
self._tolerance = kwargs['tolerance'] if 'tolerance' in kwargs else None
@property
def flag_raman(self):
return self._flag_raman
@property
def space_resolution(self):
return self._space_resolution
@property
def tolerance(self):
return self._tolerance
class NLIParams(Parameters):
def __init__(self, **kwargs):
self._nli_method_name = kwargs['nli_method_name']
self._wdm_grid_size = kwargs['wdm_grid_size']
self._dispersion_tolerance = kwargs['dispersion_tolerance']
self._phase_shift_tolerance = kwargs['phase_shift_tolerance']
self._f_cut_resolution = None
self._f_pump_resolution = None
self._computed_channels = kwargs['computed_channels'] if 'computed_channels' in kwargs else None
@property
def nli_method_name(self):
return self._nli_method_name
@property
def wdm_grid_size(self):
return self._wdm_grid_size
@property
def dispersion_tolerance(self):
return self._dispersion_tolerance
@property
def phase_shift_tolerance(self):
return self._phase_shift_tolerance
@property
def f_cut_resolution(self):
return self._f_cut_resolution
@f_cut_resolution.setter
def f_cut_resolution(self, f_cut_resolution):
self._f_cut_resolution = f_cut_resolution
@property
def f_pump_resolution(self):
return self._f_pump_resolution
@f_pump_resolution.setter
def f_pump_resolution(self, f_pump_resolution):
self._f_pump_resolution = f_pump_resolution
@property
def computed_channels(self):
return self._computed_channels
class SimParams(Parameters):
def __init__(self, **kwargs):
if kwargs:
if 'nli_parameters' in kwargs:
self._nli_params = NLIParams(**kwargs['nli_parameters'])
else:
self._nli_params = None
if 'raman_parameters' in kwargs:
self._raman_params = RamanParams(**kwargs['raman_parameters'])
else:
self._raman_params = None
@property
def nli_params(self):
return self._nli_params
@property
def raman_params(self):
return self._raman_params
class FiberParams(Parameters):
def __init__(self, **kwargs):
try:
self._length_units_factor = UNITS[kwargs['length_units']]
self._length = kwargs['length'] * self._length_units_factor # m
self._length_units = 'm'
# fixed attenuator for padding
self._att_in = kwargs['att_in'] if 'att_in' in kwargs else 0
# if not defined in the network json connector loss in/out
# the None value will be updated in network.py[build_network]
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs['con_in'] if 'con_in' in kwargs else None
self._con_out = kwargs['con_out'] if 'con_out' in kwargs else None
self._gamma = kwargs['gamma'] # 1/W/m
self._dispersion = kwargs['dispersion'] # s/m/m
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self._ref_wavelength
elif 'ref_frequency' in kwargs:
self._ref_frequency = kwargs['ref_frequency']
self._ref_wavelength = c / self._ref_frequency
else:
self._ref_wavelength = 1550e-9
self._ref_frequency = c / self._ref_wavelength
self._beta2 = (self._ref_wavelength ** 2) * abs(self._dispersion) / (2 * pi * c) # 1/(m * Hz^2)
self._beta3 = kwargs['beta3'] if 'beta3' in kwargs else 0
if type(kwargs['loss_coef']) == dict:
self._loss_coef = squeeze(kwargs['loss_coef']['loss_coef_power']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = squeeze(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = kwargs['loss_coef'] * 1e-3 # lineic loss dB/m
self._f_loss_ref = 193.5e12 # Hz
self._lin_attenuation = db2lin(self._length * self._loss_coef)
self._lin_loss_exp = self._loss_coef / (10 * log10(exp(1))) # linear power exponent loss Neper/m
self._effective_length = (1 - exp(- self._lin_loss_exp * self._length)) / self._lin_loss_exp
self._asymptotic_length = 1 / self._lin_loss_exp
# raman parameters (not compulsory)
self._raman_efficiency = kwargs['raman_efficiency'] if 'raman_efficiency' in kwargs else None
self._pumps_loss_coef = kwargs['pumps_loss_coef'] if 'pumps_loss_coef' in kwargs else None
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}')
@property
def length(self):
return self._length
@length.setter
def length(self, length):
"""length must be in m"""
self._length = length
@property
def length_units(self):
return self._length_units
@property
def length_units_factor(self):
return self._length_units_factor
@property
def att_in(self):
return self._att_in
@att_in.setter
def att_in(self, att_in):
self._att_in = att_in
@property
def con_in(self):
return self._con_in
@con_in.setter
def con_in(self, con_in):
self._con_in = con_in
@property
def con_out(self):
return self._con_out
@con_out.setter
def con_out(self, con_out):
self._con_out = con_out
@property
def dispersion(self):
return self._dispersion
@property
def gamma(self):
return self._gamma
@property
def ref_wavelength(self):
return self._ref_wavelength
@property
def ref_frequency(self):
return self._ref_frequency
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def loss_coef(self):
return self._loss_coef
@property
def f_loss_ref(self):
return self._f_loss_ref
@property
def lin_loss_exp(self):
return self._lin_loss_exp
@property
def lin_attenuation(self):
return self._lin_attenuation
@property
def effective_length(self):
return self._effective_length
@property
def asymptotic_length(self):
return self._asymptotic_length
@property
def raman_efficiency(self):
return self._raman_efficiency
@property
def pumps_loss_coef(self):
return self._pumps_loss_coef
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
return dictionary