The option is only set for gnpy-transmission-main.
The spectrum file is a list of spectrum objects, each defining
f_min, f_max and spectrum attributes using the same meaning as SI
in eqpt_config.json for baud_rate, roll_off, tx_osnr. slot_width is
used for the occupation of each carrier around their central frequency,
so slot_width corresponds to spacing of SI.
Unlike SI, the frequencies are defined includint f_min and f_max.
The partitions must be contiguous not overlapping.
Pref.p_span0 object records the req_power, while
ref_carrier records info that will be useful for equalization ie baud_rate.
For now, I have not integrated the possibility to directly use
transceivers type and mode in the list.
User can define sets of contiguous channels and a label to identify
the spectrum bands. If no label are defined, the program justs uses
the index + baud rate of the spectrum bands as label.
Print results per spectrum label
If propagated spectrum has mixed rates, then prints results (GSNR and OSNR)
for each propagated spectrum type according to its label.
Print per label channel power of elements
Per channel power prints were previously only showing the noiseless
reference channel power and only an average power.
With this change, we add a new information on the print:
the average total power (signal + noise + non-linear noise).
If there are several spectrum types propagating, the average per
spectrum is displayed using the label.
For this purpose, label and total power are recorded in each element
upon propagation
Note that the difference between this total power and the existing
channel power represents the added noise for the considered OMS.
Indeed ROADMs equalize per channel total power, so that power displayed
in 'actual pch (dBm)' may contain some noise contribution accumulated
with previous propagation.
Because 'reference pch out (dBm)' is for the noiseless reference,
it is exactly set to the target power and 'actual pch (dBm)' is always
matching 'reference pch out (dBm)' in ROADM prints.
Add examples and tests for -spectrum option
initial_spectrum1.json reproduces exactly the case of SI
initial_spectrum2.json sets half of the spectrum with 50GHz 32Gbauds and
half with 75GHz 64 Gbauds. Power setting is not set for the second half,
So that equalization will depend on ROADM settings.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ibc01e59e461e5e933e95d23dacbc5289e275ccf7
Existing tests only cover short distances, and effect on accumulated
noise, especially when crossing ROADMs with equalization, are not well
reported on elements power prints.
With this long path, I can catch more printing inconsistencies.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I2d0e8ccbbd387a2cd6c645c07f4b5f75e4617c30
Flexgrid precision is 6.25GHz so --show-channels should be at least 5 digits
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7de4254ab18508320133371e0d8cc8b5e08f0d2f
Previous check was made on reference channel computation.
Now we use the actual total input power to compute the actual gain.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I3e0db72fdb030a49e2b06cdcfb442b5e642c1777
In the previous version, when the values of the counter-propagating Raman pump profiles were flipped, the pumps resulted flipped also in frequency.
Change-Id: I66f7c2aff35c72f5dcb4fb11f7a82fe1df2ee3f2
Co-authored-by: Andrea D'Amico <andrea.damico@polito.it>
Both PMD and PDL is set to 0 by default. Values from the OpenROADM MSA
for ILAs are included in corresponding eqpt files.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I79611db3ae798e9dadc47ee39161dc1e242f2595
This fixes#421
As a first step PDL is specified in the eqpt library for ROADMs only.
In a later step, PDL (as well as PMD) should be specified also for amps
and possibly for fibers. PDL values from the OpenROADM MSA for ROADMs
are included in the corresponding eqpt files.
The acculumation rule for PDL is the same as for PMD as shown in:
"The statistics of polarization-dependent loss in optical communication
systems", A. Mecozzi and M. Shtaif, IEEE Photon. Technol. Lett., vol.
14, pp. 313-315, Mar 2002.
PDL penalty is specified and calculated in the same way as for CD and
PMD, i.e. linear interpolation between impairment_value/penalty_value
pairs. This patch includes penalty specification for OpenROADM trx
modes according to the MSA.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ib0ab383bcaee7d7523ffc3fa9a949d76c8c86ff7
In this change, the RamanSolver is completely restructured in order to obtain a simplified and faster solution of the Raman equation. Additionally, the inter-channel Raman effect can be evaluated also in the standard fiber, when no Raman pumping is present. The same is true for the GGN model.
The Raman pump parameter pumps_loss_coef has been removed as it was not used. The loss coefficient value evaluated at the pump frequency can be included within the fiber loss_coef parameter.
This change induces variations in some expected test results as the Raman profile solution is calculated by a completely distinct algorithm. Nevertheless, these variations are negligible being lower than 0.1dB.
Change-Id: Iaa40fbb23c555571497e1ff3bf19dbcbfcadf96b
Gamma and the raman efficiency are calculated using the effective area if not provided. Both these parameters are managed as optional in json_io.py for backward compatibility.
Change-Id: Id7f1403ae33aeeff7ec464e4c7f9c1dcfa946827
Oops. We are not using gating, which means that changes are tested
against the "current tip of the branch" and might pass fine there, but
once they are merged, there can well be a conflict between them. This
has just happened.
The EDFA which reported a difference had its VOA set to 0.5. Previously,
this was not taken into assumption.
Fixes: ce51a4d1 Take explicitly set out_voa value into account in power calculation
Fixes: 280443f1 add an invocation test with power saturation
Change-Id: Icebbb16d2ef5886d2c9c04cc9a300a6aa08bf245
The recent commit has added support for OpenROADM v5, the latest
published optical spec sheet. Given that the upstream project has
released v10 YANG files (but still just v3, v4 and v5 XLS sheets with
optical performance numbers), I think it would be rather misleading to
have both versioned and non-versioned config files -- especially when
the unversioned one refers to the oldest release, not the newest one.
Change-Id: I04109341724b51d276660d400c923dc28561aef2
We have a test which compares the raw output of GNPy against a fixed
expected output. That comparison of course chokes when forward slashes
and backslashes are used, which breaks the test suite on Windows. Let's
try to solve this by always using forward slashes if possible. The way
to go is via pathlib's as_posix(), but that one can possibly return an
absolute path -- which cannot work in a test suite, obviously. So one
can workaround that via calling a Path.relative_to(), but that one
chokes on paths which require at least one "path up" component (`..`).
I posted a patch which use brute force here, but Jonas is right, better
just don't print that output in the test suite in the first place.
Change-Id: I762ddb58a2042120c7b20414152a06a3ed72048d
Bug: https://github.com/Telecominfraproject/oopt-gnpy/issues/358
The current JSON data loader preserves (some) integers as integers. When
printed, the value might not contain any decimal points. The YANG patch
series, however, forces floats when floats are expected (while still
allowing None). This makes the output subtly different.
Change-Id: I0e0c013eb3abddb4aeac1ba43bf0d473fed731d4
The term "GSNR" is well established by now. I think it's time we start
using it in our own result outputs instead of alternatives like "total
SNR" or just "SNR".
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I1fc65f6db1e3b2d7cfe974875174132fe5b28d3b
This is an old pull request rebased and restricted to only raising warning.
The initial work also limited gain, which is finally not a desired behaviour:
an advanced user might want to have this high gain.
the only impact on test is that it raises warnings on almost all amplifiers
on the mesh_topology_exampleV2.xls: indeed all of them are set to low_gain
but without gain specified and the result of autodesign results in higher gains
than supported by this amplifier variety.
This may be confusing for users to see these warnings on an example from gnpy
so I will push a new commit changing the amp types to avoid this.
The alternative would be to push the warnings into the logger, so they
remain invisible, but I think that the example change makes more sense.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idf0c67137b5b466b07ddc7817f53a82f92a21a5b
The parameter add_drop_osnr is specified in the Roadm section of
eqpt_config.json and represents noise added by amplifiers within the
add/drop block of ROADMs. Currently this noise is added to the signal
whether the propagation path includes any ROADMs or not, which does not
make sense to me. This patch proposes to only add the add_drop_osnr when
a path actually includes ROADMs.
See GitHub issue #274.
Change-Id: I58961772c049578eff8879dfb2e53265866d12c4
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
(Migrated from GitHub PR #311)
Currently the output of transmission_main_example shows the first
transceiver having ONSR = +inf even when a tx_osnr has been specified,
which is confusing.
This patch proposes to update the SNR of the first transceiver with
tx_osnr.
Change-Id: Idab7c92c2f5a12cc92ce5c1c551e5710f30e6a02
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
I would like to create a package for distribution to PIP, and this seems
like the path of least resistance.
This is, apparently, the way for shippign arbitrary data with Python
[1]. I've at least tried to make it user-firendly via adding a simple
utility which just prints out whatever that data path is.
[1] https://python-packaging.readthedocs.io/en/latest/non-code-files.html
Change-Id: I220ecad84b1d57d01e3f98f15befc700bd97c0b8