The current JSON data loader preserves (some) integers as integers. When
printed, the value might not contain any decimal points. The YANG patch
series, however, forces floats when floats are expected (while still
allowing None). This makes the output subtly different.
Change-Id: I0e0c013eb3abddb4aeac1ba43bf0d473fed731d4
The term "GSNR" is well established by now. I think it's time we start
using it in our own result outputs instead of alternatives like "total
SNR" or just "SNR".
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I1fc65f6db1e3b2d7cfe974875174132fe5b28d3b
Well, sleeping ain't fun. A red warning is plenty. In case of API
access, there's none, but that's just the APIs are.
Change-Id: I2fb0c051a9c3bb7f2ef2264083686e929c27ec2c
Fixes: 6a6591e4 (Add a warning message when attributes are missing in eqpt_config.json)
We ship "some" DGT values which effectively mask this, but it's possible
to provide a "trivial" DGT vector such as [0, 0]. When that happens, the
code was failing with a numpy-level warning related to a division by
zero.
The code tried to be ready for this by trying to catch an exception, but
this relied on a particular numpy behavior upon zero division which was
not set up properly. For the added fun, there are two possible cases of
division by zero:
- on a zero tilt, it's a case of `0.0 / np.float64(0.)`, which is
controlled via "invalid",
- on a non-zero tilt, it's a case of `<float> / np.float64(0.)`, which
leads to "divide".
Let's just check for zero instead of wrestling exceptions.
Change-Id: I7a3c0b6b9b85e90a8a7201b7c7a56a5a44c27d69
I dig through the git log, and it looks like something which was never
used after some refactorings 3+ years ago.
Change-Id: I3633a59d8f2720932fa32c885ee5be643e640a46
It was only assigned to in `read_service_sheet`, and it's safe to remove
it also in `convert_service_sheet`.
Change-Id: Ia832cd8fea2d864e920907e455e834a3c3a724dd
The config file has the following properties:
* Includes only OpenROADM EDFA types (ILA / booster / preamp) and sets
allowed_for_design to true for ILAs.
* Sets ROADM restrictions to OpenROADM booster and preamp.
* Adds an OpenROADM transceiver type_variety with mode parameters
following the MSA spec.
* Sets other parameters (power_dbm, padding, add_drop_osnr, etc.)
according to OpenROADM MSA spec.
Using this config file together with auto-design should result in an
"OpenROADM compliant" network. Specifically, compliant fiber input
power levels for 50 GHz spacing are obtained by setting power_dbm = 2
and padding = 11. For other spacings than 50 GHz, power_dbm should be
changed accordingly.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I3b182f1abcc22fd77d7ec073a6c87fad320957ae
The error message was refering to method_nli which does not exist. The
correct parameter name is nli_method_name.
Change-Id: I24f24a2c5251317e1a80dda60aa27ec151628172
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
The __str__ method of the Fiber element class rounded the fiber length
to an integer but then formatted it with two decimal places, which
doesn't make sense. With this patch, two decimal places are kept.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I03b886dff7ba624929ccc85b4d77d8d6a7cbcfb4
The Raman solver gave the wrong loss profile when the fiber length was
not a multiple of the simulation parameter space_resolution as,
in this case, the fiber termination position was not included within
the considered z position array and the output loss profile was
evaluated at the wrong position.
Additionally, the Raman solver failed when the simulation parameter
space_resolution was greater than the fiber length as the z position
array contained only one element.
With this version the fiber termination position is always included
in the z position array and is composed of multiple uniformly spaced
positions and the final position (in general, the latter is not
uniformly spaced).
Example:
* fiber_length = 5, space_resolution = 4 => old version z = [0, 4]
=> new version z = [0, 4, 5]
* fiber_length = 5, space_resolution = 6 => old version z = [0]
=> new version z = [0, 5]
Alternative:
z = linespace(0, fiber_length, int(ceil(fiber_length/space_resolution)))
PROS
* Solves the first issue
* Returns a uniformly spaced z position array (there is not a
straightforward advantage in the simulation)
CONS
* Does not solve the second issue
* It is slightly more involved
Change-Id: I8886c3563ac7305c49cb5915712777ef561c5d4f
Bug: https://github.com/Telecominfraproject/oopt-gnpy/discussions/400
without this change if a request was blocked on main path due to 'NO_FEASIBLE_BAUDRATE_WITH_SPACING'
and if the request was bidir, there was a propagation tentative on the reversed path
despite the fact that no baudrate was selected, which ended up with a program crash.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie4e578aab944e534d8b2d99fb02c4e28a242e717
ParametersError is a sub class of ConfigurationError so the
corresponding except clause should be placed before. Otherwise the
ConfigurationError will be matched first instead of the more specific
ParametersError.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I67156dd7321101693fdf061d77937d4e75462593
I believe a previous commit, 3ac08f5, changed the behaviour of span
loss calculation in an unintended way, since now it adds the loss of
consecutive fiber elements even when there is no fused element in
between. This means for example that no padding is added when the loss
of consecutive fibers is higher than the padding specified in the
equipment file even though inline amplifiers will be added between the
fibers in a later step. This patch changes the conditions in the next_
and prev_node_generator so that they stop when two consecutive fibers
are found.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I42c9188c789a98a9b3d7e51d5aae15774d40dde7
Fix GitHub issue #217
Currently, if a user specifies an ILA node in an xls file, including
city name and coordinates, but does not specify type of amplifier,
etc., in the Eqpt sheet, the ILA node is not preserved when converting
to json. This patch proposes to include all ILA nodes to prevent loss
of information.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Id169348cce185e4d33d5b80068270b36043e3353
Currently, calculated new fiber coordinates, after splitting a fiber by
auto-design, are evenly distibuted. Since coordinates for added inline
edfas are the midpoint between neighboring nodes, this makes the edfas
"look" non-equidistant even if all spans have the same length. I think
it would make more sense to have the fiber coordinates represent the
midpoint of the fiber. That way, the edfa positions will look more
"natural". Here is an attempt to illustrate the difference for a link
with three fiber spans:
Before this patch:
r-----f--e--f--e--f-----r
After this patch:
r---f---e---f---e---f---r
r = roadm
e = edfa
f = fiber
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I6eafe3fcd4c718b0b995a046dbff0fd04bdc42d7
This could be (potentially) annoying to those users who rely on the
default equipment library. However, it brings at least some order into
the current state -- which was rather disorganized.
Suggested-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ifc3ec5f9e0e2526b8621d905160fc82af6a469f2
The NF calculated by the preamp model is compliant with the MW-MW noise
mask in the OpenROADM MSA spec. The booster is noise-free, which is
modeled by setting the NF to zero (-inf in dB units). This is obviously
unphysical but it is the simplest way to model the total noise
contribution from a ROADM, including preamp and booster, that is
compliant with the the OpenROADM MSA.
This also introduces two new EDFA type varieties,
"openroadm_mw_mw_preamp" and "openroadm_mw_mw_booster" in the equipment
library. I would prefer to also change the names of the existing
"openroadm" type_def and "standard"/"low_noise" type_variety,
representing an OpenROADM inline-amplifier, for better consistency but
this probably needs to be discussed first.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I7344ff53623f166649efb389c95c04ff92718e35
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
See GitHub issue #391
There has been a change in the networkx drawing API, which means
'figure' is no longer an accepted keyword argument.
Change-Id: I8600e8cd5eb2cb378a529c7857f664c1ebed8337
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
The old code assumed that the Fused node only connects Fiber nodes. In a
sequence of Fused - Amplifier - Fused - Fiber, the Amplifier would be
included by a mistake. In addition, the code was not that easy to read,
and it just instantiated StopIteration without raising that (which would
be an error in a generator context). It was also rather strict, failing
if the iterator was requested for an "edge node" (a transponder), and
one of the exceptions was not actually an f-string.
Finally, the span_loss function would occasionally report wrong values
(for example in the provided test case, span_loss("fused7") would say 1
instead of 17).
Fix this by making sure that prev_node_generator() and
next_node_generator() never return anything but Fiber and Fused nodes,
which made it possible to simplify the span_loss() function. This should
now properly account for the accumulated losses of an arbitrary sequence
of Fiber and Fused elements.
I went over this a few times because set_egress_amplifier() calls
span_loss() on a *ROADM* node type. That does not make any sense, and
the code deals with this "properly" by returning a loss of 0 dB. It was
a bit confusing for me to see that it's actually OK to ask for a "span
loss" that's identified by a ROADM.
A side effect of this code is that Fused instances that are isolated
from the rest of the topology no longer raise an exception. I was
thinking about preserving this (because for GNPy, the only element with
no previous or no next nodes are the transceivers, but then Esther's
test topology contains an isolated `fused4` element. If we want to make
this strict, we can do that easily like this:
--- a/gnpy/core/network.py
+++ b/gnpy/core/network.py
@@ -162,10 +162,12 @@ _fiber_fused_types = (elements.Fused, elements.Fiber)
def prev_node_generator(network, node):
"""fused spans interest:
iterate over all predecessors while they are Fused or Fiber type"""
try:
prev_node = next(network.predecessors(node))
except StopIteration:
- return
+ if isinstance(node, elements.Transceiver):
+ return
+ raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
if isinstance(prev_node, _fiber_fused_types) and isinstance(node, _fiber_fused_types):
yield prev_node
yield from prev_node_generator(network, prev_node)
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
Change-Id: I41a65e89eef763f82e41e52bc325ed2d488cb601
As pointed out in GitHub issue #390, the normal convention for the sign
of amplifier tilt is to define it with regard to wavelength, i.e.
negative tilt means lower gain for longer wavelengths (lower
frequencies). Currently GNPy uses the opposite convention, which this
patch proposes to change.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I8f7829a3b0b0b710f7da013c525630a60b22a2b5
Currently the tilt_target defined by a user is applied over the band of
propagating channels. This means for example that if only two channels
are propagated, the difference in gain between the two channels will be
equal to the tilt_target, independently of how close the two channels
are in frequency. I think it makes more sense to always define the
tilt_target over the full operational bandwidth of the amplifier.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I4f29de2edc4d0de239b34e0d8d678d964b6a0af3
As identified in GitHub issue #390, the dgt values (as well as gain and
nf ripple values) in example config json files are listed in order of
increasing wavelength (decreasing frequency) while the code assumes
values listed in the opposite order. This patch reverses the order of
values in affected files so that they are consistent with existing use
in the code.
Also, the f_min value in the Juniper-BoosterHG.json file is updated to
match measurement data so that interpolation is performed correctly.
Change-Id: I97a9d2f9be81380d1658bee5fa1ef4def3e1c537
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Following the change of the corresponding xls file in 60b9256 we should
change also this json file for consistency and to avoid unnecessary
confusion.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Iab12002544ad6b8489d8dfa0511fdce762cc1d7a
This is an old pull request rebased and restricted to only raising warning.
The initial work also limited gain, which is finally not a desired behaviour:
an advanced user might want to have this high gain.
the only impact on test is that it raises warnings on almost all amplifiers
on the mesh_topology_exampleV2.xls: indeed all of them are set to low_gain
but without gain specified and the result of autodesign results in higher gains
than supported by this amplifier variety.
This may be confusing for users to see these warnings on an example from gnpy
so I will push a new commit changing the amp types to avoid this.
The alternative would be to push the warnings into the logger, so they
remain invisible, but I think that the example change makes more sense.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Idf0c67137b5b466b07ddc7817f53a82f92a21a5b
Patch 503833 (Fix calculation of gain for first Edfa after Roadm)
introduced a bug when it was rebased on top of the per degree power
feature since per_degree_pch_out_db used for propagation was actually
updated based on calculated prev_dp value.
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I39e8f5945d5035b99c70ef577011bba79bb89a72
This allows users to limit the choice of type_variety by auto-design
for an EDFA node by setting a "variety_list" attribute in the input
topology json file. One use-case is switchable gain EDFAs where the
two gain ranges can be modeled by two separate type varieties in the
equipment library. A user may know that such an EDFA will be used in
a node but not which gain range is optimal. The choice of gain range
can then be left to auto-design while not allowing any other
type_variety by specifying the node e.g. like this in the topology:
{
"uid": "Edfa1",
"type": "Edfa",
"variety_list": ["foo_gain_range_1", "foo_gain_range_2"],
...
}
Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: Ia69ef78f885e3a61310530b6b80da64e43758211