Commit Graph

12 Commits

Author SHA1 Message Date
EstherLerouzic
bd6b278dd1 Add tx_osnr in spectral information
This change enables to use a different tx_osnr per carrier.

If tx_osnr is defined via spectrum then use it to define a tx_osnr per
carrier in si else use the tx_osnr of request to set tx_osnr of si.

Then, the propagate function for requests is changed to update OSNR with
tx_OSNR per carrier defined in si.

TODO: The tx_osnr defined in spectrum is not yet taken into account for
the propagate_and_optimize function, because the loop that optimizes
the choice for the mode only loops on baudrate.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0fcdf559d4f1f8f0047faa257076084ec7adcc77
2022-10-31 16:04:46 +01:00
EstherLerouzic
ffc7dbc241 Change pref from a scalar to a list of per channel delta power
The idea behind this change is to reproduce the exact same behaviour as
with the scalar, but accounting for variable levels of powers.

- delete the  neq_ch: equivalent channel count in dB because with mixed
  rates and power such a value has limited utility
- instead creates a vector that records the 'user defined' distribution
  of power.

This vector is used as a reference for channel equalization out of the
ROADM. If target_power_per_channel has some channels power above
input power, then the whole target is reduced.
For example, if user specifies delta_pdb_per_channel:
   freq1: 1dB, freq2: 3dB, freq3: -3dB, and target is -20dBm out of the
ROADM, then the target power for each channel uses the specified
delta_pdb_per_channel.
   target_power_per_channel[f1, f2, f3] = -19, -17, -23
However if input_signal = -23, -16, -26, then the target can not be
applied, because -23 < -19dBm and -26 < -23dBm, and a reduction must be
applied (ROADM can not amplify).
Then the target is only applied to signals whose power is above the
threshold. others are left unchanged and unequalized.
the new target is [-23, -17, -26]
and the attenuation to apply is [-23, -16, -26] - [-23, -17, -26] = [0, 1, 0]

Important note:
This changes the previous behaviour that equalized all identical channels
based on the one that had the min power !!

TODO: in coming refactor where transmission and design will be properly
separated, the initial behaviour may be set again as a design choice.

This change corresponds to a discussion held during coders call. Please look at this document for
a reference: https://telecominfraproject.atlassian.net/wiki/spaces/OOPT/pages/669679645/PSE+Meeting+Minutes

- in amplifier: the saturation is computed based on this vector
delta_pdb_per_channel, instead of the nb of channels.
The target of the future refactor will be to use the effective
carrier's power. I prefer to have this first step, because this is
how it is implemented today (ie based on the noiseless reference),
and I would like first to add more behaviour tests before doing
this refactor (would it be needed).

- in spectralInfo class, change pref to a Pref object to enable both
p_span0 and p_spani to be conveyed during propagation of
spectral_information in elements. No refactor of them at this point.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I591027cdd08e89098330c7d77d6f50212f4d4724
2022-10-28 09:13:24 +02:00
Giacomo Borraccini
aaf0480e9c Management of lumped losses along a fiber span
The lumped losses are used in the computation of the loss/gain profile
through the fiber whether the Raman effect is considered or not. The
computed power profile is used to calculate the related NLI impairment.

Using the 'gn_model_analytic' method, the lumped losses are taken into
account as the contribution of an additional total loss at the end of
the fiber span. In case the 'ggn_spectrally_separated' is selected, the
method uses the computed power profile according to the specified z and
frequency arrays. The lumped losses are so considered within the NLI
power evolution along the fiber.

Change-Id: I73a6baa321aca4d041cafa180f47afed824ce267
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2022-02-10 17:33:34 +01:00
AndreaDAmico
09920c0af2 Fiber propagation of new Spectral Information.
Modification of the Fiber and the NliSolver in order to properly propagate the new definition of the spectral information taking advantage of the numpy array structures.

In the previous version, the propagation of the spectral information was implemented by means of for cycles over each channel, in turn.
In this change the propagation is applied directly on the newly defined spectral information attributes as numpy arrays.

Additional changes:
- Simplification of the FiberParameters and the NliParameters;
- Previous issues regarding the loss_coef definition along the frequency are solved;
- New test in test_science_utils.py verifing that the fiber propagation provides the correct values in case of a few cases of flex grid spectra.

Change-Id: Id71f36effba35fc3ed4bbf2481a3cf6566ccb51c
2022-01-06 12:00:00 +01:00
AndreaDAmico
e6a3d9ce5b Small change on Fiber parameters
Squeeze function has been replaced by asarray. Using 'get' function
instead of if condition for the dictionaries.  Frequency reference
derived from wavelength reference of 1550 nm.

Change-Id: I815ad8591c9e238f3fc9322ca0946ea469ff448f
2022-01-06 12:00:00 +01:00
AndreaDAmico
32d8b2a4d8 Simulation Parameters
This change siplifies the structure of the simulation parameters,
removing the gnpy.science_utils.simulation layer, provides some
documentation of the parameters and define a mock fixture for testing in
safe mode.

Jan: while I'm not thrilled by this concept of hidden global state, we
agreed to let it in as a temporary measure (so as not to hold merging of
Andrea's flexgrid/multirate patches). I've refactored this to a more
pytest-ish way of dealing with fixtures. In the end, it was also
possible to remove the MockSimParams class because it was not adding any
features on top of what SimParams can do already (and to what was
tested).

Change-Id: If5ef341e0585586127d5dae3f39dca2c232236f1
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2021-10-29 13:14:22 +02:00
AndreaDAmico
9a7f94a391 cleaning: minor changes and specific numpy imports in utils and science_utils.
Change-Id: I57cd9075dd0a523a90131fbd8747519cf6554900
2020-11-19 14:57:57 +00:00
Jan Kundrát
80f63d32ed use load_json instead of open coding
Change-Id: I43cfbb7272bfdd834fad63e6715932ff45aeac0b
2020-06-08 20:06:11 +02:00
Jan Kundrát
9e74e8b0a0 De-JSONify gnpy.core
Change-Id: I2657f3174209bef5912c7d0809fee876830ad11c
2020-05-23 20:44:51 +02:00
Jan Kundrát
3548ed74e2 coding style: autopep --in-place --recursive --jobs 4 --max-line-length 120 gnpy/ tests/
Change-Id: I2f0fca5aa1314f9bb546a3e6dc712a42580cd562
2020-05-19 12:40:00 +02:00
AndreaDAmico
80eced85ec Refactoring with some incompatible changes
Please be advised that there were incompatible changes in the Raman
options, including a `s/phase_shift_tollerance/phase_shift_tolerance/`.

Signed-off-by: AndreaDAmico <andrea.damico@polito.it>
Co-authored-by: EstherLerouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2019-12-17 11:51:09 +01:00
Alessio Ferrari
d483802a86 Edn-to-end test for Raman amplification 2019-12-12 12:52:59 +00:00