An approximated version of the GGN is implemented to reduce the computational time enabling fast multi-band transmission simulations
Change-Id: I2951a878aa04b5eb4a33ba86d626a788c4cbb100
gnpy currently uses the same parameter for tx output power and span
input power: this prevents from modelling low tx power effect.
This patch introduces a new tx-cannel-power and uses it to
propagate in ROADM.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Id3ac75e2cb617b513bdb38b51a52e05d15af46f5
Finally, ref_carrier is not meant to change after design since
it is the carrier used for design. So let's move its definition
to networks function. Only ROADM need the ref_carrier baud rate
so let's define a dedicated variable in ROADM to hold it.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ida7e42dd534a04c8df8792b44980f3fd2165ecb6
reference channel is defined during design. No need to convey it
anymore during propagation.
move target_pch_out_db definition to the design phase and change
its name to be consistent with what it contains (dbm)
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I350e4557e8488a614674042de26152ab89b2d245
input power is computed at design time: so let's record it and
use it instead of p_span_i for reference channel fiber loss computation.
Note that this loss parameter is only used for visualisation purpose.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I16bd792bd6079ce521aafadcf5e21922aa3b4c81
1. Effective area scaling along frequency is implemented by means of a technological model.
2. Raman gain coefficient is extended coherently, including the scaling due to the pump frequency.
Change-Id: I4e8b79697500ef0f73ba2f969713d9bdb3e9949c
Co-authored-by: Giacomo Borraccini <giacomo.borraccini@polito.it>
Constant power per slot_width uses the slot width instead of
baud rate compared to PSD.
This is the equalization used in OpenROADM
add tests for constant power per slot width equalization
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ie350e4c15cb6b54c15e418556fe33e72486cb134
ref_carrier is added in Pref conveys the reference channel type
information ie the channel that was used for design (would it be
auto-design or for a given design). Other attributes (like
slot_width or roll-off) may be added here for future equalization
types.
Pref object already records the req_power, so let's remove it
from ReferenceCarrier and only use ref_carrier to record info that
will be useful for PSD equalization ie baud_rate.
This reference baud_rate is required to compute reference target power
based on spectral density values during propagation. It is thus required
because of on-the-fly evaluation of loss for p_span_i and for printing
loss and target power of ROADM during propagation.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: Ic7441afa12ca5273ff99dea0268e439276107257
This change enables to use a different tx_osnr per carrier.
If tx_osnr is defined via spectrum then use it to define a tx_osnr per
carrier in si else use the tx_osnr of request to set tx_osnr of si.
Then, the propagate function for requests is changed to update OSNR with
tx_OSNR per carrier defined in si.
TODO: The tx_osnr defined in spectrum is not yet taken into account for
the propagate_and_optimize function, because the loop that optimizes
the choice for the mode only loops on baudrate.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I0fcdf559d4f1f8f0047faa257076084ec7adcc77
The idea behind this change is to reproduce the exact same behaviour as
with the scalar, but accounting for variable levels of powers.
- delete the neq_ch: equivalent channel count in dB because with mixed
rates and power such a value has limited utility
- instead creates a vector that records the 'user defined' distribution
of power.
This vector is used as a reference for channel equalization out of the
ROADM. If target_power_per_channel has some channels power above
input power, then the whole target is reduced.
For example, if user specifies delta_pdb_per_channel:
freq1: 1dB, freq2: 3dB, freq3: -3dB, and target is -20dBm out of the
ROADM, then the target power for each channel uses the specified
delta_pdb_per_channel.
target_power_per_channel[f1, f2, f3] = -19, -17, -23
However if input_signal = -23, -16, -26, then the target can not be
applied, because -23 < -19dBm and -26 < -23dBm, and a reduction must be
applied (ROADM can not amplify).
Then the target is only applied to signals whose power is above the
threshold. others are left unchanged and unequalized.
the new target is [-23, -17, -26]
and the attenuation to apply is [-23, -16, -26] - [-23, -17, -26] = [0, 1, 0]
Important note:
This changes the previous behaviour that equalized all identical channels
based on the one that had the min power !!
TODO: in coming refactor where transmission and design will be properly
separated, the initial behaviour may be set again as a design choice.
This change corresponds to a discussion held during coders call. Please look at this document for
a reference: https://telecominfraproject.atlassian.net/wiki/spaces/OOPT/pages/669679645/PSE+Meeting+Minutes
- in amplifier: the saturation is computed based on this vector
delta_pdb_per_channel, instead of the nb of channels.
The target of the future refactor will be to use the effective
carrier's power. I prefer to have this first step, because this is
how it is implemented today (ie based on the noiseless reference),
and I would like first to add more behaviour tests before doing
this refactor (would it be needed).
- in spectralInfo class, change pref to a Pref object to enable both
p_span0 and p_spani to be conveyed during propagation of
spectral_information in elements. No refactor of them at this point.
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I591027cdd08e89098330c7d77d6f50212f4d4724
The lumped losses are used in the computation of the loss/gain profile
through the fiber whether the Raman effect is considered or not. The
computed power profile is used to calculate the related NLI impairment.
Using the 'gn_model_analytic' method, the lumped losses are taken into
account as the contribution of an additional total loss at the end of
the fiber span. In case the 'ggn_spectrally_separated' is selected, the
method uses the computed power profile according to the specified z and
frequency arrays. The lumped losses are so considered within the NLI
power evolution along the fiber.
Change-Id: I73a6baa321aca4d041cafa180f47afed824ce267
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
Modification of the Fiber and the NliSolver in order to properly propagate the new definition of the spectral information taking advantage of the numpy array structures.
In the previous version, the propagation of the spectral information was implemented by means of for cycles over each channel, in turn.
In this change the propagation is applied directly on the newly defined spectral information attributes as numpy arrays.
Additional changes:
- Simplification of the FiberParameters and the NliParameters;
- Previous issues regarding the loss_coef definition along the frequency are solved;
- New test in test_science_utils.py verifing that the fiber propagation provides the correct values in case of a few cases of flex grid spectra.
Change-Id: Id71f36effba35fc3ed4bbf2481a3cf6566ccb51c
Squeeze function has been replaced by asarray. Using 'get' function
instead of if condition for the dictionaries. Frequency reference
derived from wavelength reference of 1550 nm.
Change-Id: I815ad8591c9e238f3fc9322ca0946ea469ff448f
This change siplifies the structure of the simulation parameters,
removing the gnpy.science_utils.simulation layer, provides some
documentation of the parameters and define a mock fixture for testing in
safe mode.
Jan: while I'm not thrilled by this concept of hidden global state, we
agreed to let it in as a temporary measure (so as not to hold merging of
Andrea's flexgrid/multirate patches). I've refactored this to a more
pytest-ish way of dealing with fixtures. In the end, it was also
possible to remove the MockSimParams class because it was not adding any
features on top of what SimParams can do already (and to what was
tested).
Change-Id: If5ef341e0585586127d5dae3f39dca2c232236f1
Signed-off-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>