#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' gnpy.core.network ================= This module contains functions for constructing networks of network elements. ''' from gnpy.core.convert import convert_file from networkx import DiGraph from scipy.interpolate import interp1d from logging import getLogger from os import path from operator import attrgetter from gnpy.core import elements from gnpy.core.elements import Fiber, Edfa, Transceiver, Roadm, Fused from gnpy.core.equipment import edfa_nf from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError from gnpy.core.units import UNITS from gnpy.core.utils import (load_json, save_json, round2float, merge_amplifier_restrictions) from collections import namedtuple logger = getLogger(__name__) def load_network(filename, equipment, name_matching = False): json_filename = '' if filename.suffix.lower() in ('.xls', '.xlsx'): logger.info('Automatically generating topology JSON file') json_filename = convert_file(filename, name_matching) elif filename.suffix.lower() == '.json': json_filename = filename else: raise ValueError(f'unsuported topology filename extension {filename.suffix.lower()}') json_data = load_json(json_filename) return network_from_json(json_data, equipment) def save_network(filename, network): filename_output = path.splitext(filename)[0] + '_auto_design.json' json_data = network_to_json(network) save_json(json_data, filename_output) def network_from_json(json_data, equipment): # NOTE|dutc: we could use the following, but it would tie our data format # too closely to the graph library # from networkx import node_link_graph g = DiGraph() for el_config in json_data['elements']: typ = el_config.pop('type') variety = el_config.pop('type_variety', 'default') if typ in equipment and variety in equipment[typ]: extra_params = equipment[typ][variety] temp = el_config.setdefault('params', {}) temp = merge_amplifier_restrictions(temp, extra_params.__dict__) el_config['params'] = temp el_config['type_variety'] = variety elif typ in ['Edfa', 'Fiber', 'RamanFiber']: # catch it now because the code will crash later! raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:' '\nplease check it is properly defined in the eqpt_config json file') cls = getattr(elements, typ) el = cls(**el_config) g.add_node(el) nodes = {k.uid: k for k in g.nodes()} for cx in json_data['connections']: from_node, to_node = cx['from_node'], cx['to_node'] try: if isinstance(nodes[from_node], Fiber): edge_length = nodes[from_node].params.length else: edge_length = 0.01 g.add_edge(nodes[from_node], nodes[to_node], weight = edge_length) except KeyError: raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}') return g def network_to_json(network): data = { 'elements': [n.to_json for n in network] } connections = { 'connections': [{"from_node": n.uid, "to_node": next_n.uid} for n in network for next_n in network.successors(n) if next_n is not None] } data.update(connections) return data def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None): """amplifer selection algorithm @Orange Jean-Luc Augé """ Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf') TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain # for roadm restriction only: create a dict including not allowed for design amps # because main use case is to have specific radm amp which are not allowed for ILA # with the auto design edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items() if restrictions is None or name in restrictions} pin = power_target - gain_target # create 2 list of available amplifiers with relevant attributes for their selection # edfa list with: # extended gain min allowance of 3dB: could be parametrized, but a bit complex # extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json # power attribut include power AND gain limitations edfa_list = [Edfa_list( variety=edfa_variety, power=min( pin +edfa.gain_flatmax +TARGET_EXTENDED_GAIN, edfa.p_max ) -power_target, gain_min= gain_target+3 -edfa.gain_min, nf=edfa_nf(gain_target, edfa_variety, equipment)) \ for edfa_variety, edfa in edfa_dict.items() if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)] #consider a Raman list because of different gain_min requirement: #do not allow extended gain min for Raman raman_list = [Edfa_list( variety=edfa_variety, power=min( pin +edfa.gain_flatmax +TARGET_EXTENDED_GAIN, edfa.p_max ) -power_target, gain_min= gain_target -edfa.gain_min, nf=edfa_nf(gain_target, edfa_variety, equipment)) for edfa_variety, edfa in edfa_dict.items() if (edfa.allowed_for_design and edfa.raman)] \ if raman_allowed else [] #merge raman and edfa lists amp_list = edfa_list + raman_list #filter on min gain limitation: acceptable_gain_min_list = [x for x in amp_list if x.gain_min>0] if len(acceptable_gain_min_list) < 1: #do not take this empty list into account for the rest of the code #but issue a warning to the user and do not consider Raman #Raman below min gain should not be allowed because i is meant to be a design requirement #and raman padding at the amplifier input is impossible! if len(edfa_list) < 1: raise ConfigurationError(f'auto_design could not find any amplifier \ to satisfy min gain requirement in node {uid} \ please increase span fiber padding') else: # TODO: convert to logging print( f'\x1b[1;31;40m'\ + f'WARNING: target gain in node {uid} is below all available amplifiers min gain: \ amplifier input padding will be assumed, consider increase span fiber padding instead'\ + '\x1b[0m' ) acceptable_gain_min_list = edfa_list #filter on gain+power limitation: #this list checks both the gain and the power requirement #because of the way .power is calculated in the list acceptable_power_list = [x for x in acceptable_gain_min_list if x.power>0] if len(acceptable_power_list) < 1: #no amplifier satisfies the required power, so pick the highest power(s): power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power #check and pick if other amplifiers may have a similar gain/power #allow a 0.3dB power range #this allows to chose an amplifier with a better NF subsequentely acceptable_power_list = [x for x in acceptable_gain_min_list if x.power-power_max>-0.3] # gain and power requirements are resolved, # =>chose the amp with the best NF among the acceptable ones: selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) #filter on NF #check what are the gain and power limitations of this amp power_reduction = round(min(selected_edfa.power, 0),2) if power_reduction < -0.5: print( f'\x1b[1;31;40m'\ + f'WARNING: target gain and power in node {uid}\n \ is beyond all available amplifiers capabilities and/or extended_gain_range:\n\ a power reduction of {power_reduction} is applied\n'\ + '\x1b[0m' ) return selected_edfa.variety, power_reduction def target_power(network, node, equipment): #get_fiber_dp SPAN_LOSS_REF = 20 POWER_SLOPE = 0.3 power_mode = equipment['Span']['default'].power_mode dp_range = list(equipment['Span']['default'].delta_power_range_db) node_loss = span_loss(network, node) try: dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2]) dp = max(dp_range[0], dp) dp = min(dp_range[1], dp) except KeyError: raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]' f'delta_power_range_db: [lower_bound, upper_bound, step]') if isinstance(node, Roadm): dp = 0 return dp def prev_node_generator(network, node): """fused spans interest: iterate over all predecessors while they are Fused or Fiber type""" try: prev_node = next(n for n in network.predecessors(node)) except StopIteration: raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology') # yield and re-iterate if isinstance(prev_node, Fused) or isinstance(node, Fused): yield prev_node yield from prev_node_generator(network, prev_node) else: StopIteration def next_node_generator(network, node): """fused spans interest: iterate over all successors while they are Fused or Fiber type""" try: next_node = next(n for n in network.successors(node)) except StopIteration: raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology') # yield and re-iterate if isinstance(next_node, Fused) or isinstance(node, Fused): yield next_node yield from next_node_generator(network, next_node) else: StopIteration def span_loss(network, node): """Fused span interest: return the total span loss of all the fibers spliced by a Fused node""" loss = node.loss if node.passive else 0 try: prev_node = next(n for n in network.predecessors(node)) if isinstance(prev_node, Fused): loss += sum(n.loss for n in prev_node_generator(network, node)) except StopIteration: pass try: next_node = next(n for n in network.successors(node)) if isinstance(next_node, Fused): loss += sum(n.loss for n in next_node_generator(network, node)) except StopIteration: pass return loss def find_first_node(network, node): """Fused node interest: returns the 1st node at the origin of a succession of fused nodes (aka no amp in between)""" this_node = node for this_node in prev_node_generator(network, node): pass return this_node def find_last_node(network, node): """Fused node interest: returns the last node in a succession of fused nodes (aka no amp in between)""" this_node = node for this_node in next_node_generator(network, node): pass return this_node def set_amplifier_voa(amp, power_target, power_mode): VOA_MARGIN = 1 #do not maximize the VOA optimization if amp.out_voa is None: if power_mode: gain_target = amp.effective_gain voa = min(amp.params.p_max-power_target, amp.params.gain_flatmax-amp.effective_gain) voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0 amp.delta_p = amp.delta_p + voa amp.effective_gain = amp.effective_gain + voa else: voa = 0 # no output voa optimization in gain mode amp.out_voa = voa def set_egress_amplifier(network, roadm, equipment, pref_total_db): power_mode = equipment['Span']['default'].power_mode next_oms = (n for n in network.successors(roadm) if not isinstance(n, Transceiver)) for oms in next_oms: #go through all the OMS departing from the Roadm node = roadm prev_node = roadm next_node = oms # if isinstance(next_node, Fused): #support ROADM wo egress amp for metro applications # node = find_last_node(next_node) # next_node = next(n for n in network.successors(node)) # next_node = find_last_node(next_node) prev_dp = getattr(node.params, 'target_pch_out_db', 0) dp = prev_dp prev_voa = 0 voa = 0 while True: #go through all nodes in the OMS (loop until next Roadm instance) if isinstance(node, Edfa): node_loss = span_loss(network, prev_node) voa = node.out_voa if node.out_voa else 0 if node.delta_p is None: dp = target_power(network, next_node, equipment) else: dp = node.delta_p gain_from_dp = node_loss + dp - prev_dp + prev_voa if node.effective_gain is None or power_mode: gain_target = gain_from_dp else: #gain mode with effective_gain gain_target = node.effective_gain dp = prev_dp - node_loss + gain_target power_target = pref_total_db + dp raman_allowed = False if isinstance(prev_node, Fiber): max_fiber_lineic_loss_for_raman = \ equipment['Span']['default'].max_fiber_lineic_loss_for_raman raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman # implementation of restrictions on roadm boosters if isinstance(prev_node,Roadm): if prev_node.restrictions['booster_variety_list']: restrictions = prev_node.restrictions['booster_variety_list'] else: restrictions = None elif isinstance(next_node,Roadm): # implementation of restrictions on roadm preamp if next_node.restrictions['preamp_variety_list']: restrictions = next_node.restrictions['preamp_variety_list'] else: restrictions = None else: restrictions = None if node.params.type_variety == '': edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment, node.uid, restrictions) extra_params = equipment['Edfa'][edfa_variety] node.params.update_params(extra_params.__dict__) dp += power_reduction gain_target += power_reduction elif node.params.raman and not raman_allowed: print( f'\x1b[1;31;40m'\ + f'WARNING: raman is used in node {node.uid}\n \ but fiber lineic loss is above threshold\n'\ + '\x1b[0m' ) node.delta_p = dp if power_mode else None node.effective_gain = gain_target set_amplifier_voa(node, power_target, power_mode) if isinstance(next_node, Roadm) or isinstance(next_node, Transceiver): break prev_dp = dp prev_voa = voa prev_node = node node = next_node # print(f'{node.uid}') next_node = next(n for n in network.successors(node)) def add_egress_amplifier(network, node): next_nodes = [n for n in network.successors(node) if not (isinstance(n, Transceiver) or isinstance(n, Fused) or isinstance(n, Edfa))] #no amplification for fused spans or TRX for i, next_node in enumerate(next_nodes): network.remove_edge(node, next_node) amp = Edfa( uid = f'Edfa{i}_{node.uid}', params = {}, metadata = { 'location': { 'latitude': (node.lat * 2 + next_node.lat * 2) / 4, 'longitude': (node.lng * 2 + next_node.lng * 2) / 4, 'city': node.loc.city, 'region': node.loc.region, } }, operational = { 'gain_target': None, 'tilt_target': 0, }) network.add_node(amp) if isinstance(node,Fiber): edgeweight = node.params.length else: edgeweight = 0.01 network.add_edge(node, amp, weight = edgeweight) network.add_edge(amp, next_node, weight = 0.01) def calculate_new_length(fiber_length, bounds, target_length): if fiber_length < bounds.stop: return fiber_length, 1 n_spans = int(fiber_length // target_length) length1 = fiber_length / (n_spans+1) delta1 = target_length-length1 result1 = (length1, n_spans+1) length2 = fiber_length / n_spans delta2 = length2-target_length result2 = (length2, n_spans) if (bounds.start <= length1 <= bounds.stop) and not(bounds.start <= length2 <= bounds.stop): result = result1 elif (bounds.start <= length2 <= bounds.stop) and not(bounds.start <= length1 <= bounds.stop): result = result2 else: result = result1 if delta1 < delta2 else result2 return result def split_fiber(network, fiber, bounds, target_length, equipment): new_length, n_spans = calculate_new_length(fiber.params.length, bounds, target_length) if n_spans == 1: return try: next_node = next(network.successors(fiber)) prev_node = next(network.predecessors(fiber)) except StopIteration: raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology') network.remove_node(fiber) fiber.params.length = new_length f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat]) xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n+1)/(n_spans+1) for n in range(n_spans)] ypos = f(xpos) for span, lng, lat in zip(range(n_spans), xpos, ypos): new_span = Fiber(uid=f'{fiber.uid}_({span+1}/{n_spans})', type_variety=fiber.type_variety, metadata={ 'location': { 'latitude': lat, 'longitude': lng, 'city': fiber.loc.city, 'region': fiber.loc.region, } }, params=fiber.params.asdict()) if isinstance(prev_node, Fiber): edgeweight = prev_node.params.length else: edgeweight = 0.01 network.add_edge(prev_node, new_span, weight=edgeweight) prev_node = new_span if isinstance(prev_node, Fiber): edgeweight = prev_node.params.length else: edgeweight = 0.01 network.add_edge(prev_node, next_node, weight=edgeweight) def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL): for fiber in fibers: if fiber.params.con_in is None: fiber.params.con_in = default_con_in if fiber.params.con_out is None: fiber.params.con_out = default_con_out next_node = next(n for n in network.successors(fiber)) if not isinstance(next_node, Fused): fiber.params.con_out += EOL def add_fiber_padding(network, fibers, padding): """last_fibers = (fiber for n in network.nodes() if not (isinstance(n, Fiber) or isinstance(n, Fused)) for fiber in network.predecessors(n) if isinstance(fiber, Fiber))""" for fiber in fibers: this_span_loss = span_loss(network, fiber) try: next_node = next(network.successors(fiber)) except StopIteration: raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology') if this_span_loss < padding and not (isinstance(next_node, Fused)): #add a padding att_in at the input of the 1st fiber: #address the case when several fibers are spliced together first_fiber = find_first_node(network, fiber) # in order to support no booster , fused might be placed # just after a roadm: need to check that first_fiber is really a fiber if isinstance(first_fiber,Fiber): if first_fiber.params.att_in is None: first_fiber.params.att_in = padding - this_span_loss else: first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss def build_network(network, equipment, pref_ch_db, pref_total_db): default_span_data = equipment['Span']['default'] max_length = int(default_span_data.max_length * UNITS[default_span_data.length_units]) min_length = max(int(default_span_data.padding/0.2*1e3), 50_000) bounds = range(min_length, max_length) target_length = max(min_length, 90_000) default_con_in = default_span_data.con_in default_con_out = default_span_data.con_out padding = default_span_data.padding #set roadm loss for gain_mode before to build network fibers = [f for f in network.nodes() if isinstance(f, Fiber)] add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL) add_fiber_padding(network, fibers, padding) # don't group split fiber and add amp in the same loop # =>for code clarity (at the expense of speed): for fiber in fibers: split_fiber(network, fiber, bounds, target_length, equipment) amplified_nodes = [n for n in network.nodes() if isinstance(n, Fiber) or isinstance(n, Roadm)] for node in amplified_nodes: add_egress_amplifier(network, node) roadms = [r for r in network.nodes() if isinstance(r, Roadm)] for roadm in roadms: set_egress_amplifier(network, roadm, equipment, pref_total_db) #support older json input topology wo Roadms: if len(roadms) == 0: trx = [t for t in network.nodes() if isinstance(t, Transceiver)] for t in trx: set_egress_amplifier(network, t, equipment, pref_total_db)