#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' gnpy.core.utils =============== This module contains utility functions that are used with gnpy. ''' from csv import writer import numpy as np from numpy import pi, cos, sqrt, log10 from scipy import constants from gnpy.core.exceptions import ConfigurationError def write_csv(obj, filename): """ Convert dictionary items to a CSV file the dictionary format: :: {'result category 1': [ # 1st line of results {'header 1' : value_xxx, 'header 2' : value_yyy}, # 2nd line of results: same headers, different results {'header 1' : value_www, 'header 2' : value_zzz} ], 'result_category 2': [ {},{} ] } The generated csv file will be: :: result_category 1 header 1 header 2 value_xxx value_yyy value_www value_zzz result_category 2 ... """ with open(filename, 'w', encoding='utf-8') as f: w = writer(f) for data_key, data_list in obj.items(): # main header w.writerow([data_key]) # sub headers: headers = [_ for _ in data_list[0].keys()] w.writerow(headers) for data_dict in data_list: w.writerow([_ for _ in data_dict.values()]) def arrange_frequencies(length, start, stop): """Create an array of frequencies :param length: number of elements :param start: Start frequency in THz :param stop: Stop frequency in THz :type length: integer :type start: float :type stop: float :return: an array of frequencies determined by the spacing parameter :rtype: numpy.ndarray """ return np.linspace(start, stop, length) def lin2db(value): """Convert linear unit to logarithmic (dB) >>> lin2db(0.001) -30.0 >>> round(lin2db(1.0), 2) 0.0 >>> round(lin2db(1.26), 2) 1.0 >>> round(lin2db(10.0), 2) 10.0 >>> round(lin2db(100.0), 2) 20.0 """ return 10 * log10(value) def db2lin(value): """Convert logarithimic units to linear >>> round(db2lin(10.0), 2) 10.0 >>> round(db2lin(20.0), 2) 100.0 >>> round(db2lin(1.0), 2) 1.26 >>> round(db2lin(0.0), 2) 1.0 >>> round(db2lin(-10.0), 2) 0.1 """ return 10**(value / 10) def round2float(number, step): step = round(step, 1) if step >= 0.01: number = round(number / step, 0) number = round(number * step, 1) else: number = round(number, 2) return number wavelength2freq = constants.lambda2nu freq2wavelength = constants.nu2lambda def freq2wavelength(value): """ Converts frequency units to wavelength units. >>> round(freq2wavelength(191.35e12) * 1e9, 3) 1566.723 >>> round(freq2wavelength(196.1e12) * 1e9, 3) 1528.773 """ return constants.c / value def snr_sum(snr, bw, snr_added, bw_added=12.5e9): snr_added = snr_added - lin2db(bw / bw_added) snr = -lin2db(db2lin(-snr) + db2lin(-snr_added)) return snr def deltawl2deltaf(delta_wl, wavelength): """ deltawl2deltaf(delta_wl, wavelength): delta_wl is BW in wavelength units wavelength is the center wl units for delta_wl and wavelength must be same :param delta_wl: delta wavelength BW in same units as wavelength :param wavelength: wavelength BW is relevant for :type delta_wl: float or numpy.ndarray :type wavelength: float :return: The BW in frequency units :rtype: float or ndarray """ f = wavelength2freq(wavelength) return delta_wl * f / wavelength def deltaf2deltawl(delta_f, frequency): """ deltawl2deltaf(delta_f, frequency): converts delta frequency to delta wavelength units for delta_wl and wavelength must be same :param delta_f: delta frequency in same units as frequency :param frequency: frequency BW is relevant for :type delta_f: float or numpy.ndarray :type frequency: float :return: The BW in wavelength units :rtype: float or ndarray """ wl = freq2wavelength(frequency) return delta_f * wl / frequency def rrc(ffs, baud_rate, alpha): """ rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter function. :param ffs: A numpy array of frequencies :param baud_rate: The Baud Rate of the System :param alpha: The roll-off factor of the filter :type ffs: numpy.ndarray :type baud_rate: float :type alpha: float :return: hf a numpy array of the filter shape :rtype: numpy.ndarray """ Ts = 1 / baud_rate l_lim = (1 - alpha) / (2 * Ts) r_lim = (1 + alpha) / (2 * Ts) hf = np.zeros(np.shape(ffs)) slope_inds = np.where( np.logical_and(np.abs(ffs) > l_lim, np.abs(ffs) < r_lim)) hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) * (np.abs(ffs[slope_inds]) - l_lim))) p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim)) hf[p_inds] = 1 return sqrt(hf) def merge_amplifier_restrictions(dict1, dict2): """Updates contents of dicts recursively >>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}} >>> d2 = {'params': {'target_pch_out_db': -20}} >>> merge_amplifier_restrictions(d1, d2) {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}} >>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}} >>> merge_amplifier_restrictions(d1, d3) {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}} """ copy_dict1 = dict1.copy() for key in dict2: if key in dict1: if isinstance(dict1[key], dict): copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key]) else: copy_dict1[key] = dict2[key] return copy_dict1 def silent_remove(this_list, elem): """Remove matching elements from a list without raising ValueError >>> li = [0, 1] >>> li = silent_remove(li, 1) >>> li [0] >>> li = silent_remove(li, 1) >>> li [0] """ try: this_list.remove(elem) except ValueError: pass return this_list def automatic_nch(f_min, f_max, spacing): """How many channels are available in the spectrum :param f_min Lowest frequenecy [Hz] :param f_max Highest frequency [Hz] :param spacing Channel width [Hz] :return Number of uniform channels >>> automatic_nch(191.325e12, 196.125e12, 50e9) 96 >>> automatic_nch(193.475e12, 193.525e12, 50e9) 1 """ return int((f_max - f_min) // spacing) def automatic_fmax(f_min, spacing, nch): """Find the high-frequenecy boundary of a spectrum :param f_min Start of the spectrum (lowest frequency edge) [Hz] :param spacing Grid/channel spacing [Hz] :param nch Number of channels :return End of the spectrum (highest frequency) [Hz] >>> automatic_fmax(191.325e12, 50e9, 96) 196125000000000.0 """ return f_min + spacing * nch def convert_length(value, units): """Convert length into basic SI units >>> convert_length(1, 'km') 1000.0 >>> convert_length(2.0, 'km') 2000.0 >>> convert_length(123, 'm') 123.0 >>> convert_length(123.0, 'm') 123.0 >>> convert_length(42.1, 'km') 42100.0 >>> convert_length(666, 'yards') Traceback (most recent call last): ... gnpy.core.exceptions.ConfigurationError: Cannot convert length in "yards" into meters """ if units == 'm': return value * 1e0 elif units == 'km': return value * 1e3 else: raise ConfigurationError(f'Cannot convert length in "{units}" into meters')