#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ gnpy.core.science_utils ======================= Solver definitions to calculate the Raman effect and the nonlinear interference noise The solvers take as input instances of the spectral information, the fiber and the simulation parameters """ from numpy import interp, pi, zeros, shape, where, cos, array, append, ones, exp, arange, sqrt, trapz, arcsinh, \ clip, abs, sum, concatenate, flip, outer, inner, transpose, max, format_float_scientific, diag, prod, argwhere, \ unique, argsort, cumprod from logging import getLogger from scipy.constants import k, h from scipy.interpolate import interp1d from math import isclose from gnpy.core.utils import db2lin, lin2db from gnpy.core.exceptions import EquipmentConfigError from gnpy.core.parameters import SimParams from gnpy.core.info import SpectralInformation logger = getLogger(__name__) sim_params = SimParams() def raised_cosine_comb(f, *carriers): """Returns an array storing the PSD of a WDM comb of raised cosine shaped channels at the input frequencies defined in array f :param f: numpy array of frequencies in Hz :param carriers: namedtuple describing the WDM comb :return: PSD of the WDM comb evaluated over f """ psd = zeros(shape(f)) for carrier in carriers: f_nch = carrier.frequency g_ch = carrier.power.signal / carrier.baud_rate ts = 1 / carrier.baud_rate pass_band = (1 - carrier.roll_off) / (2 / carrier.baud_rate) stop_band = (1 + carrier.roll_off) / (2 / carrier.baud_rate) ff = abs(f - f_nch) tf = ff - pass_band if carrier.roll_off == 0: psd = where(tf <= 0, g_ch, 0.) + psd else: psd = g_ch * (where(tf <= 0, 1., 0.) + 1 / 2 * (1 + cos(pi * ts / carrier.roll_off * tf)) * where(tf > 0, 1., 0.) * where(abs(ff) <= stop_band, 1., 0.)) + psd return psd class StimulatedRamanScattering: def __init__(self, power_profile, loss_profile, frequency, z): """ :params power_profile: power profile matrix along frequency and z [W] :params loss_profile: power profile matrix along frequency and z [linear units] :params frequency: channels frequencies array [Hz] :params z: positions array [m] """ self.power_profile = power_profile self.loss_profile = loss_profile # Field loss profile matrix along frequency and z self.rho = sqrt(loss_profile) self.frequency = frequency self.z = z class RamanSolver: """This class contains the methods to calculate the Raman scattering effect.""" @staticmethod def _create_lumped_losses(z, lumped_losses, z_lumped_losses): lumped_losses = concatenate((lumped_losses, ones(z.size))) z, unique_indices = unique(concatenate((z_lumped_losses, z)), return_index=True) order = argsort(z) lumped_losses = (lumped_losses[unique_indices])[order] z = z[order] return z, lumped_losses @staticmethod def calculate_attenuation_profile(spectral_info: SpectralInformation, fiber): """Evaluates the attenuation profile along the z axis for all the frequency propagating in the fiber without considering the stimulated Raman scattering. """ # z array definition z = array([0, fiber.params.length]) # Lumped losses array definition z, lumped_losses = RamanSolver._create_lumped_losses(z, fiber.lumped_losses, fiber.z_lumped_losses) lumped_loss_acc = cumprod(lumped_losses) frequency = spectral_info.frequency alpha = fiber.alpha(frequency) loss_profile = exp(- outer(alpha, z)) * lumped_loss_acc power_profile = outer(spectral_info.signal, ones(z.size)) * loss_profile return StimulatedRamanScattering(power_profile, loss_profile, spectral_info.frequency, z) @staticmethod def calculate_stimulated_raman_scattering(spectral_info: SpectralInformation, fiber): """Evaluates the Raman profile along the z axis for all the frequency propagated in the fiber including the Raman pumps co- and counter-propagating """ logger.debug('Start computing fiber Stimulated Raman Scattering') if sim_params.raman_params.flag: # Raman parameters z_resolution = sim_params.raman_params.result_spatial_resolution z_step = sim_params.raman_params.solver_spatial_resolution z = append(arange(0, fiber.params.length, z_step), fiber.params.length) z_final = append(arange(0, fiber.params.length, z_resolution), fiber.params.length) # Lumped losses array definition z, lumped_losses = RamanSolver._create_lumped_losses(z, fiber.lumped_losses, fiber.z_lumped_losses) if hasattr(fiber, 'raman_pumps'): # TODO: verify co-propagating pumps computation and in general unsorted frequency # Co-propagating spectrum definition co_raman_pump_power = array([pump.power for pump in fiber.raman_pumps if pump.propagation_direction == 'coprop']) co_raman_pump_frequency = array([pump.frequency for pump in fiber.raman_pumps if pump.propagation_direction == 'coprop']) co_power = concatenate((spectral_info.signal, co_raman_pump_power)) co_frequency = concatenate((spectral_info.frequency, co_raman_pump_frequency)) # Counter-propagating spectrum definition cnt_power = array([pump.power for pump in fiber.raman_pumps if pump.propagation_direction == 'counterprop']) cnt_frequency = array([pump.frequency for pump in fiber.raman_pumps if pump.propagation_direction == 'counterprop']) # Co-propagating profile initialization co_power_profile = zeros([co_frequency.size, z.size]) if co_frequency.size: co_cr = fiber.cr(co_frequency) co_alpha = fiber.alpha(co_frequency) co_power_profile = \ RamanSolver.first_order_derivative_solution(co_power, co_alpha, co_cr, z, lumped_losses) # Counter-propagating profile initialization cnt_power_profile = zeros([cnt_frequency.size, z.size]) if cnt_frequency.size: cnt_cr = fiber.cr(cnt_frequency) cnt_alpha = fiber.alpha(cnt_frequency) cnt_power_profile = \ flip(RamanSolver.first_order_derivative_solution(cnt_power, cnt_alpha, cnt_cr, z[-1] - flip(z), flip(lumped_losses)), axis=1) # Co-propagating and Counter-propagating Profile Computation if co_frequency.size and cnt_frequency.size: co_power_profile, cnt_power_profile = \ RamanSolver.iterative_algorithm(co_power_profile, cnt_power_profile, co_frequency, cnt_frequency, z, fiber, lumped_losses) # Complete Power Profile power_profile = concatenate((co_power_profile, cnt_power_profile), axis=0) # Complete Loss Profile co_loss_profile = co_power_profile / outer(co_power, ones(z.size)) cnt_loss_profile = cnt_power_profile / outer(cnt_power, ones(z.size)) loss_profile = concatenate((co_loss_profile, cnt_loss_profile), axis=0) # Complete frequency frequency = concatenate((co_frequency, cnt_frequency)) else: # Without Raman pumps alpha = fiber.alpha(spectral_info.frequency) cr = fiber.cr(spectral_info.frequency) # Power profile power_profile = \ RamanSolver.first_order_derivative_solution(spectral_info.signal, alpha, cr, z, lumped_losses) # Loss profile loss_profile = power_profile / outer(spectral_info.signal, ones(z.size)) frequency = spectral_info.frequency power_profile = interp1d(z, power_profile, axis=1)(z_final) loss_profile = interp1d(z, loss_profile, axis=1)(z_final) stimulated_raman_scattering = StimulatedRamanScattering(power_profile, loss_profile, frequency, z_final) else: stimulated_raman_scattering = \ RamanSolver.calculate_attenuation_profile(spectral_info, fiber) return stimulated_raman_scattering @staticmethod def calculate_spontaneous_raman_scattering(spectral_info: SpectralInformation, srs: StimulatedRamanScattering, fiber): """Evaluates the Raman profile along the z axis for all the frequency propagated in the fiber including the Raman pumps co- and counter-propagating. """ logger.debug('Start computing fiber Spontaneous Raman Scattering') z = srs.z baud_rate = spectral_info.baud_rate frequency = spectral_info.frequency channels_loss = srs.loss_profile[:spectral_info.number_of_channels, :] # calculate ase power ase = zeros(spectral_info.number_of_channels) for i, pump in enumerate(fiber.raman_pumps): pump_power = srs.power_profile[spectral_info.number_of_channels + i, :] df = pump.frequency - frequency eta = - 1 / (1 - exp(h * df / (k * fiber.temperature))) cr = fiber._cr_function(df) integral = trapz(pump_power / channels_loss, z, axis=1) ase += 2 * h * baud_rate * frequency * (1 + eta) * cr * (df > 0) * integral # 2 factor for double pol return ase @staticmethod def first_order_derivative_solution(power_in, alpha, cr, z, lumped_losses): """Solves the Raman first order derivative equation :param power_in: launch power array :param alpha: loss coefficient array :param cr: Raman efficiency coefficients matrix :param z: z position array :param lumped_losses: concentrated losses array along the fiber span :return: power profile matrix """ dz = z[1:] - z[:-1] power = outer(power_in, ones(z.size)) for i in range(1, z.size): power[:, i] = \ power[:, i - 1] * (1 + (- alpha + sum(cr * power[:, i - 1], 1)) * dz[i - 1]) * lumped_losses[i - 1] return power @staticmethod def iterative_algorithm(co_initial_guess_power, cnt_initial_guess_power, co_frequency, cnt_frequency, z, fiber, lumped_losses): """Solves the Raman first order derivative equation in case of both co- and counter-propagating frequencies :param co_initial_guess_power: co-propagationg Raman first order derivative equation solution :param cnt_initial_guess_power: counter-propagationg Raman first order derivative equation solution :param co_frequency: co-propagationg frequencies :param cnt_frequency: counter-propagationg frequencies :param z: z position array :param fiber: instance of gnpy.core.elements.Fiber or gnpy.core.elements.RamanFiber :param lumped_losses: concentrated losses array along the fiber span :return: co- and counter-propagatng power profile matrix """ logger.debug(' Start iterative algorithm') residue = 1 residue_tol = 1e-6 accuracy = 1 accuracy_tol = 1e-3 iteration = 0 num_max_iter = 1000 prev_power = concatenate((co_initial_guess_power, cnt_initial_guess_power)) frequency = concatenate((co_frequency, cnt_frequency)) dz = z[1:] - z[:-1] cr = fiber.cr(frequency) alpha = fiber.alpha(frequency) next_power = array(prev_power) while residue > residue_tol and accuracy > accuracy_tol and iteration < num_max_iter: iteration += 1 for i in range(1, z.size): dpdz = - alpha + sum(cr * next_power[:, i - 1], 1) next_power[:co_frequency.size, i] = \ next_power[:co_frequency.size, i - 1] * (1 + dpdz[:co_frequency.size] * dz[i - 1]) * \ lumped_losses[i - 1] for i in range(1, z.size): dpdz = - alpha + sum(cr * next_power[:, -i], 1) next_power[co_frequency.size:, -i - 1] = \ next_power[co_frequency.size:, -i] * (1 + dpdz[co_frequency.size:] * dz[-i]) * \ lumped_losses[-i] dpdz_num = (next_power[:co_frequency.size, 1:] - next_power[:co_frequency.size, :-1]) / dz dpdz_exp = next_power[:co_frequency.size, :-1] * \ (- outer(alpha, ones(z.size)) + inner(cr, transpose(next_power)))[:co_frequency.size, :-1] * \ lumped_losses[:-1] residue = max(abs((next_power - prev_power) / next_power)) accuracy = max(abs((dpdz_exp - dpdz_num) / dpdz_exp)) prev_power = array(next_power) logger.debug(f' Iteration: {iteration} Accuracy: {format_float_scientific(accuracy, precision=3)}') return next_power[:co_frequency.size, :], next_power[co_frequency.size:, :] class NliSolver: """This class implements the NLI models. Model and method can be specified in `sim_params.nli_params.method`. List of implemented methods: 'gn_model_analytic': eq. 120 from arXiv:1209.0394 'ggn_spectrally_separated': eq. 21 from arXiv: 1710.02225 spectrally separated """ @staticmethod def effective_length(alpha, length): """The effective length identify the region in which the NLI has a significant contribution to the signal degradation. """ return (1 - exp(- alpha * length)) / alpha @staticmethod def compute_nli(spectral_info: SpectralInformation, srs: StimulatedRamanScattering, fiber): """Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier` at the end of the fiber span. """ logger.debug('Start computing fiber NLI noise') # Physical fiber parameters alpha = fiber.alpha(spectral_info.frequency) beta2 = fiber.params.beta2 beta3 = fiber.params.beta3 f_ref_beta = fiber.params.ref_frequency gamma = fiber.params.gamma length = fiber.params.length if 'gn_model_analytic' == sim_params.nli_params.method: nli = NliSolver._gn_analytic(spectral_info, alpha, beta2, gamma, length) elif 'ggn_spectrally_separated' in sim_params.nli_params.method: nli = NliSolver._ggn_spectrally_separated(spectral_info, srs, alpha, beta2, beta3, f_ref_beta, gamma) else: raise ValueError(f'Method {sim_params.nli_params.method} not implemented.') return nli # Methods for computing GN-model @staticmethod def _gn_analytic(spectral_info: SpectralInformation, alpha, beta2, gamma, length): """Computes the nonlinear interference power evaluated at the fiber input. The method uses eq. 120 from arXiv:1209.0394 """ spm_weight = (16.0 / 27.0) * gamma ** 2 xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2 nch = spectral_info.number_of_channels identity = diag(ones(nch)) weight = spm_weight * identity + xpm_weight * (ones([nch, nch]) - identity) effective_length = NliSolver.effective_length(alpha, length) asymptotic_length = 1 / alpha df = spectral_info.df baud_rate = spectral_info.baud_rate psd = spectral_info.signal / baud_rate ggg = outer(psd, psd**2) psi = NliSolver._psi(df, baud_rate, beta2, effective_length, asymptotic_length) g_nli = sum(weight * ggg * psi, 1) nli = spectral_info.baud_rate * g_nli # Local white noise return nli @staticmethod def _psi(df, baud_rate, beta2, effective_length, asymptotic_length): """Calculates eq. 123 from `arXiv:1209.0394 `__""" cut_baud_rate = outer(baud_rate, ones(baud_rate.size)) pump_baud_rate = baud_rate right_extreme = df + pump_baud_rate / 2 left_extreme = df - pump_baud_rate / 2 psi = (arcsinh(pi ** 2 * asymptotic_length * abs(beta2) * cut_baud_rate * right_extreme) - arcsinh(pi ** 2 * asymptotic_length * abs(beta2) * cut_baud_rate * left_extreme)) / 2 psi *= effective_length ** 2 / (2 * pi * abs(beta2) * asymptotic_length) return psi # Methods for computing the GGN-model @staticmethod def _ggn_spectrally_separated(spectral_info: SpectralInformation, srs: StimulatedRamanScattering, alpha, beta2, beta3, f_ref_beta, gamma): """Computes the nonlinear interference power evaluated at the fiber input. The method uses eq. 21 from arXiv: 1710.02225 """ dispersion_tolerance = sim_params.nli_params.dispersion_tolerance phase_shift_tolerance = sim_params.nli_params.phase_shift_tolerance slot_width = max(spectral_info.slot_width) delta_z = sim_params.raman_params.result_spatial_resolution spm_weight = (16.0 / 27.0) * gamma ** 2 xpm_weight = 2 * (16.0 / 27.0) * gamma ** 2 cuts = [carrier for carrier in spectral_info.carriers if carrier.channel_number in sim_params.nli_params.computed_channels] if sim_params.nli_params.computed_channels \ else spectral_info.carriers g_nli = array([]) f_nli = array([]) for cut_carrier in cuts: logger.debug(f'Start computing fiber NLI noise of cut: {cut_carrier}') f_eval = cut_carrier.frequency g_nli_computed = 0 g_cut = (cut_carrier.power.signal / cut_carrier.baud_rate) for j, pump_carrier in enumerate(spectral_info.carriers): dn = abs(pump_carrier.channel_number - cut_carrier.channel_number) delta_f = abs(cut_carrier.frequency - pump_carrier.frequency) k_tol = dispersion_tolerance * abs(alpha[j]) phi_tol = phase_shift_tolerance / delta_z f_cut_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * (1 + dn) * slot_width) f_pump_resolution = min(k_tol, phi_tol) / abs(beta2) / (4 * pi ** 2 * slot_width) if dn == 0: # SPM ggg = g_cut ** 3 g_nli_computed += \ spm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, f_pump_resolution, srs, alpha[j], beta2, beta3, f_ref_beta) else: # XPM g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate) ggg = g_cut * g_pump ** 2 frequency_offset_threshold = NliSolver._frequency_offset_threshold(beta2, pump_carrier.baud_rate) if abs(delta_f) <= frequency_offset_threshold: g_nli_computed += \ xpm_weight * ggg * NliSolver._generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, f_pump_resolution, srs, alpha[j], beta2, beta3, f_ref_beta) else: g_nli_computed += \ xpm_weight * ggg * NliSolver._fast_generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, srs, alpha[j], beta2, beta3, f_ref_beta) f_nli = append(f_nli, cut_carrier.frequency) g_nli = append(g_nli, g_nli_computed) g_nli = interp(spectral_info.frequency, f_nli, g_nli) nli = spectral_info.baud_rate * g_nli # Local white noise return nli @staticmethod def _fast_generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, srs, alpha, beta2, beta3, f_ref_beta): """Computes the generalized psi function similarly to the one used in the GN model.""" z = srs.z rho_norm = srs.rho * exp(outer(alpha/2, z)) rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency) f1_array = array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2), pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)]) f2_array = arange(cut_carrier.frequency, cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2), f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric integrand_f1 = zeros(len(f1_array)) for f1_index, f1 in enumerate(f1_array): delta_beta = 4 * pi ** 2 * (f1 - f_eval) * (f2_array - f_eval) * \ (beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta)) integrand_f2 = NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha) integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2 generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate return generalized_psi @staticmethod def _generalized_psi(f_eval, cut_carrier, pump_carrier, f_cut_resolution, f_pump_resolution, srs, alpha, beta2, beta3, f_ref_beta): """Computes the generalized psi function similarly to the one used in the GN model.""" z = srs.z rho_norm = srs.rho * exp(outer(alpha / 2, z)) rho_pump = interp1d(srs.frequency, rho_norm, axis=0)(pump_carrier.frequency) f1_array = arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2), pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2), f_pump_resolution) f2_array = arange(cut_carrier.frequency - (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2), cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2), f_cut_resolution) psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal) integrand_f1 = zeros(len(f1_array)) for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)): f3_array = f1 + f2_array - f_eval psd2 = raised_cosine_comb(f2_array, cut_carrier) * (cut_carrier.baud_rate / cut_carrier.power.signal) psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal) ggg = psd1_sample * psd2 * psd3 delta_beta = 4 * pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \ (beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta)) integrand_f2 = ggg * NliSolver._generalized_rho_nli(delta_beta, rho_pump, z, alpha) integrand_f1[f1_index] = trapz(integrand_f2, f2_array) generalized_psi = trapz(integrand_f1, f1_array) return generalized_psi @staticmethod def _generalized_rho_nli(delta_beta, rho_pump, z, alpha): w = 1j * delta_beta - alpha generalized_rho_nli = (rho_pump[-1]**2 * exp(w * z[-1]) - rho_pump[0]**2 * exp(w * z[0])) / w for z_ind in range(0, len(z) - 1): derivative_rho = (rho_pump[z_ind + 1]**2 - rho_pump[z_ind]**2) / (z[z_ind + 1] - z[z_ind]) generalized_rho_nli -= derivative_rho * (exp(w * z[z_ind + 1]) - exp(w * z[z_ind])) / (w**2) generalized_rho_nli = abs(generalized_rho_nli)**2 return generalized_rho_nli @staticmethod def _frequency_offset_threshold(beta2, symbol_rate): k_ref = 5 beta2_ref = 21.3e-27 delta_f_ref = 50e9 rs_ref = 32e9 beta2 = abs(beta2) freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (beta2 * symbol_rate) return freq_offset_th def estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max): if nf_min < -10: raise EquipmentConfigError(f'Invalid nf_min value {nf_min!r} for amplifier {type_variety}') if nf_max < -10: raise EquipmentConfigError(f'Invalid nf_max value {nf_max!r} for amplifier {type_variety}') # NF estimation model based on nf_min and nf_max # delta_p: max power dB difference between first and second stage coils # dB g1a: first stage gain - internal VOA attenuation # nf1, nf2: first and second stage coils # calculated by solving nf_{min,max} = nf1 + nf2 / g1a{min,max} delta_p = 5 g1a_min = gain_min - (gain_max - gain_min) - delta_p g1a_max = gain_max - delta_p nf2 = lin2db((db2lin(nf_min) - db2lin(nf_max)) / (1 / db2lin(g1a_max) - 1 / db2lin(g1a_min))) nf1 = lin2db(db2lin(nf_min) - db2lin(nf2) / db2lin(g1a_max)) if nf1 < 4: raise EquipmentConfigError(f'First coil value too low {nf1} for amplifier {type_variety}') # Check 1 dB < delta_p < 6 dB to ensure nf_min and nf_max values make sense. # There shouldn't be high nf differences between the two coils: # nf2 should be nf1 + 0.3 < nf2 < nf1 + 2 # If not, recompute and check delta_p if not nf1 + 0.3 < nf2 < nf1 + 2: nf2 = clip(nf2, nf1 + 0.3, nf1 + 2) g1a_max = lin2db(db2lin(nf2) / (db2lin(nf_min) - db2lin(nf1))) delta_p = gain_max - g1a_max g1a_min = gain_min - (gain_max - gain_min) - delta_p if not 1 < delta_p < 11: raise EquipmentConfigError(f'Computed \N{greek capital letter delta}P invalid \ \n 1st coil vs 2nd coil calculated DeltaP {delta_p:.2f} for \ \n amplifier {type_variety} is not valid: revise inputs \ \n calculated 1st coil NF = {nf1:.2f}, 2nd coil NF = {nf2:.2f}') # Check calculated values for nf1 and nf2 calc_nf_min = lin2db(db2lin(nf1) + db2lin(nf2) / db2lin(g1a_max)) if not isclose(nf_min, calc_nf_min, abs_tol=0.01): raise EquipmentConfigError(f'nf_min does not match calc_nf_min, {nf_min} vs {calc_nf_min} for amp {type_variety}') calc_nf_max = lin2db(db2lin(nf1) + db2lin(nf2) / db2lin(g1a_min)) if not isclose(nf_max, calc_nf_max, abs_tol=0.01): raise EquipmentConfigError(f'nf_max does not match calc_nf_max, {nf_max} vs {calc_nf_max} for amp {type_variety}') return nf1, nf2, delta_p