#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ gnpy.topology.spectrum_assignment ================================= This module contains the :class:`Oms` and :class:`Bitmap` classes and methods to select and assign spectrum. The :func:`spectrum_selection` function identifies the free slots and :func:`select_candidate` selects the candidate spectrum according to strategy: for example first fit oms records its elements, and elements are updated with an oms to have element/oms correspondace """ from collections import namedtuple from logging import getLogger from gnpy.core.elements import Roadm, Transceiver from gnpy.core.exceptions import ServiceError, SpectrumError from gnpy.topology.request import compute_spectrum_slot_vs_bandwidth LOGGER = getLogger(__name__) class Bitmap: """ records the spectrum occupation """ def __init__(self, f_min, f_max, grid, guardband=0.15e12, bitmap=None): # n is the min index including guardband. Guardband is require to be sure # that a channel can be assigned with center frequency fmin (means that its # slot occupation goes below freq_index_min n_min = frequency_to_n(f_min - guardband, grid) n_max = frequency_to_n(f_max + guardband, grid) - 1 self.n_min = n_min self.n_max = n_max self.freq_index_min = frequency_to_n(f_min) self.freq_index_max = frequency_to_n(f_max) self.freq_index = list(range(n_min, n_max + 1)) if bitmap is None: self.bitmap = [1] * (n_max - n_min + 1) elif len(bitmap) == len(self.freq_index): self.bitmap = bitmap else: raise SpectrumError(f'bitmap is not consistant with f_min{f_min} - n: {n_min} and f_max{f_max}- n :{n_max}') def getn(self, i): """ converts the n (itu grid) into a local index """ return self.freq_index[i] def geti(self, nvalue): """ converts the local index into n (itu grid) """ return self.freq_index.index(nvalue) def insert_left(self, newbitmap): """ insert bitmap on the left to align oms bitmaps if their start frequencies are different """ self.bitmap = newbitmap + self.bitmap temp = list(range(self.n_min - len(newbitmap), self.n_min)) self.freq_index = temp + self.freq_index self.n_min = self.freq_index[0] def insert_right(self, newbitmap): """ insert bitmap on the right to align oms bitmaps if their stop frequencies are different """ self.bitmap = self.bitmap + newbitmap self.freq_index = self.freq_index + list(range(self.n_max, self.n_max + len(newbitmap))) self.n_max = self.freq_index[-1] # +'grid available_slots f_min f_max services_list') OMSParams = namedtuple('OMSParams', 'oms_id el_id_list el_list') class OMS: """ OMS class is the logical container that represent a link between two adjacent ROADMs and records the crossed elements and the occupied spectrum """ def __init__(self, *args, **params): params = OMSParams(**params) self.oms_id = params.oms_id self.el_id_list = params.el_id_list self.el_list = params.el_list self.spectrum_bitmap = [] self.nb_channels = 0 self.service_list = [] # TODO def __str__(self): return '\n\t'.join([f'{type(self).__name__} {self.oms_id}', f'{self.el_id_list[0]} - {self.el_id_list[-1]}']) def __repr__(self): return '\n\t'.join([f'{type(self).__name__} {self.oms_id}', f'{self.el_id_list[0]} - {self.el_id_list[-1]}', '\n']) def add_element(self, elem): """ records oms elements """ self.el_id_list.append(elem.uid) self.el_list.append(elem) def update_spectrum(self, f_min, f_max, guardband=0.15e12, existing_spectrum=None, grid=0.00625e12): """ frequencies expressed in Hz """ if existing_spectrum is None: # add some 150 GHz margin to enable a center channel on f_min # use ITU-T G694.1 # Flexible DWDM grid definition # For the flexible DWDM grid, the allowed frequency slots have a nominal # central frequency (in THz) defined by: # 193.1 + n × 0.00625 where n is a positive or negative integer including 0 # and 0.00625 is the nominal central frequency granularity in THz # and a slot width defined by: # 12.5 × m where m is a positive integer and 12.5 is the slot width granularity in # GHz. # Any combination of frequency slots is allowed as long as no two frequency # slots overlap. # TODO : add explaination on that / parametrize .... self.spectrum_bitmap = Bitmap(f_min, f_max, grid, guardband) # print(len(self.spectrum_bitmap.bitmap)) def assign_spectrum(self, nvalue, mvalue): """ change oms spectrum to mark spectrum assigned """ if not isinstance(nvalue, int): raise SpectrumError(f'N must be a signed integer, got {nvalue}') if not isinstance(mvalue, int): raise SpectrumError(f'M must be an integer, got {mvalue}') if mvalue <= 0: raise SpectrumError(f'M must be positive, got {mvalue}') if nvalue > self.spectrum_bitmap.freq_index_max: raise SpectrumError(f'N {nvalue} over the upper spectrum boundary') if nvalue < self.spectrum_bitmap.freq_index_min: raise SpectrumError(f'N {nvalue} below the lower spectrum boundary') startn, stopn = mvalue_to_slots(nvalue, mvalue) if stopn > self.spectrum_bitmap.n_max: raise SpectrumError(f'N {nvalue}, M {mvalue} over the N spectrum bitmap bounds') if startn <= self.spectrum_bitmap.n_min: raise SpectrumError(f'N {nvalue}, M {mvalue} below the N spectrum bitmap bounds') self.spectrum_bitmap.bitmap[self.spectrum_bitmap.geti(startn):self.spectrum_bitmap.geti(stopn) + 1] = [0] * (stopn - startn + 1) def add_service(self, service_id, nb_wl): """ record service and mark spectrum as occupied """ self.service_list.append(service_id) self.nb_channels += nb_wl def frequency_to_n(freq, grid=0.00625e12): """ converts frequency into the n value (ITU grid) reference to Recommendation G.694.1 (02/12), Figure I.3 https://www.itu.int/rec/T-REC-G.694.1-201202-I/en >>> frequency_to_n(193.1375e12) 6 >>> frequency_to_n(193.225e12) 20 """ return (int)((freq - 193.1e12) / grid) def nvalue_to_frequency(nvalue, grid=0.00625e12): """ converts n value into a frequency reference to Recommendation G.694.1 (02/12), Table 1 https://www.itu.int/rec/T-REC-G.694.1-201202-I/en >>> nvalue_to_frequency(6) 193137500000000.0 >>> nvalue_to_frequency(-1, 0.1e12) 193000000000000.0 """ return 193.1e12 + nvalue * grid def mvalue_to_slots(nvalue, mvalue): """ convert center n an m into start and stop n """ startn = nvalue - mvalue stopn = nvalue + mvalue - 1 return startn, stopn def slots_to_m(startn, stopn): """ converts the start and stop n values to the center n and m value reference to Recommendation G.694.1 (02/12), Figure I.3 https://www.itu.int/rec/T-REC-G.694.1-201202-I/en >>> nval, mval = slots_to_m(6, 20) >>> nval 13 >>> mval 7 """ nvalue = (int)((startn + stopn + 1) / 2) mvalue = (int)((stopn - startn + 1) / 2) return nvalue, mvalue def m_to_freq(nvalue, mvalue, grid=0.00625e12): """ converts m into frequency range spectrum(13,7) is (193137500000000.0, 193225000000000.0) reference to Recommendation G.694.1 (02/12), Figure I.3 https://www.itu.int/rec/T-REC-G.694.1-201202-I/en >>> fstart, fstop = m_to_freq(13, 7) >>> fstart 193137500000000.0 >>> fstop 193225000000000.0 """ startn, stopn = mvalue_to_slots(nvalue, mvalue) fstart = nvalue_to_frequency(startn, grid) fstop = nvalue_to_frequency(stopn + 1, grid) return fstart, fstop def align_grids(oms_list): """ used to apply same grid to all oms : same starting n, stop n and slot size out of grid slots are set to 0 """ n_min = min([o.spectrum_bitmap.n_min for o in oms_list]) n_max = max([o.spectrum_bitmap.n_max for o in oms_list]) for this_o in oms_list: if (this_o.spectrum_bitmap.n_min - n_min) > 0: this_o.spectrum_bitmap.insert_left([0] * (this_o.spectrum_bitmap.n_min - n_min)) if (n_max - this_o.spectrum_bitmap.n_max) > 0: this_o.spectrum_bitmap.insert_right([0] * (n_max - this_o.spectrum_bitmap.n_max)) return oms_list def build_oms_list(network, equipment): """ initialization of OMS list in the network an oms is build reading all intermediate nodes between two adjacent ROADMs each element within the list is being added an oms and oms_id to record the oms it belongs to. the function supports different spectrum width and supposes that the whole network works with the min range among OMSs """ oms_id = 0 oms_list = [] for node in [n for n in network.nodes() if isinstance(n, Roadm)]: for edge in network.edges([node]): if not isinstance(edge[1], Transceiver): nd_in = edge[0] # nd_in is a Roadm try: nd_in.oms_list.append(oms_id) except AttributeError: nd_in.oms_list = [] nd_in.oms_list.append(oms_id) nd_out = edge[1] params = {} params['oms_id'] = oms_id params['el_id_list'] = [] params['el_list'] = [] oms = OMS(**params) oms.add_element(nd_in) while not isinstance(nd_out, Roadm): oms.add_element(nd_out) # add an oms_id in the element nd_out.oms_id = oms_id nd_out.oms = oms n_temp = nd_out nd_out = next(n[1] for n in network.edges([n_temp]) if n[1].uid != nd_in.uid) nd_in = n_temp oms.add_element(nd_out) # nd_out is a Roadm try: nd_out.oms_list.append(oms_id) except AttributeError: nd_out.oms_list = [] nd_out.oms_list.append(oms_id) oms.update_spectrum(equipment['SI']['default'].f_min, equipment['SI']['default'].f_max, grid=0.00625e12) # oms.assign_spectrum(13,7) gives back (193137500000000.0, 193225000000000.0) # as in the example in the standard # oms.assign_spectrum(13,7) oms_list.append(oms) oms_id += 1 oms_list = align_grids(oms_list) reversed_oms(oms_list) return oms_list def reversed_oms(oms_list): """ identifies reversed OMS only applicable for non parallel OMS """ for oms in oms_list: has_reversed = False for this_o in oms_list: if (oms.el_id_list[0] == this_o.el_id_list[-1] and oms.el_id_list[-1] == this_o.el_id_list[0]): oms.reversed_oms = this_o has_reversed = True break if not has_reversed: oms.reversed_oms = None def bitmap_sum(band1, band2): """mark occupied bitmap by 0 if the slot is occupied in band1 or in band2""" res = [] for i, elem in enumerate(band1): if band2[i] * elem == 0: res.append(0) else: res.append(1) return res def spectrum_selection(pth, oms_list, requested_m, requested_n=None): """Collects spectrum availability and call the select_candidate function""" # use indexes instead of ITU-T n values path_oms = [] for elem in pth: if not isinstance(elem, Roadm) and not isinstance(elem, Transceiver): # only edfa, fused and fibers have oms_id attribute path_oms.append(elem.oms_id) # remove duplicate oms_id, order is not important path_oms = list(set(path_oms)) # assuming all oms have same freq index if not path_oms: candidate = (None, None, None) return candidate, path_oms freq_index = oms_list[path_oms[0]].spectrum_bitmap.freq_index freq_index_min = oms_list[path_oms[0]].spectrum_bitmap.freq_index_min freq_index_max = oms_list[path_oms[0]].spectrum_bitmap.freq_index_max freq_availability = oms_list[path_oms[0]].spectrum_bitmap.bitmap for oms in path_oms[1:]: freq_availability = bitmap_sum(oms_list[oms].spectrum_bitmap.bitmap, freq_availability) if requested_n is None: # avoid slots reserved on the edge 0.15e-12 on both sides -> 24 candidates = [(freq_index[i] + requested_m, freq_index[i], freq_index[i] + 2 * requested_m - 1) for i in range(len(freq_availability)) if freq_availability[i:i + 2 * requested_m] == [1] * (2 * requested_m) and freq_index[i] >= freq_index_min and freq_index[i + 2 * requested_m - 1] <= freq_index_max] candidate = select_candidate(candidates, policy='first_fit') else: i = oms_list[path_oms[0]].spectrum_bitmap.geti(requested_n) # print(f'N {requested_n} i {i}') # print(freq_availability[i-m:i+m] ) # print(freq_index[i-m:i+m]) if (freq_availability[i - requested_m:i + requested_m] == [1] * (2 * requested_m) and freq_index[i - requested_m] >= freq_index_min and freq_index[i + requested_m - 1] <= freq_index_max): # candidate is the triplet center_n, startn and stopn candidate = (requested_n, requested_n - requested_m, requested_n + requested_m - 1) else: candidate = (None, None, None) return candidate, path_oms def select_candidate(candidates, policy): """ selects a candidate among all available spectrum """ if policy == 'first_fit': if candidates: return candidates[0] else: return (None, None, None) else: raise ServiceError('Only first_fit spectrum assignment policy is implemented.') def pth_assign_spectrum(pths, rqs, oms_list, rpths): """ basic first fit assignment if reversed path are provided, means that occupation is bidir """ for pth, rq, rpth in zip(pths, rqs, rpths): # computes the number of channels required if hasattr(rq, 'blocking_reason'): rq.N = None rq.M = None else: nb_wl, requested_m = compute_spectrum_slot_vs_bandwidth(rq.path_bandwidth, rq.spacing, rq.bit_rate) if getattr(rq, 'M', None) is not None: # Consistency check between the requested M and path_bandwidth # M value should be bigger than the computed requested_m (simple estimate) # TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of # superchannel closed packing. if requested_m > rq.M: rq.N = None rq.M = None rq.blocking_reason = 'NOT_ENOUGH_RESERVED_SPECTRUM' # need to stop here for this request and not go though spectrum selection process with requested_m continue # use the req.M even if requested_m is smaller requested_m = rq.M requested_n = getattr(rq, 'N', None) (center_n, startn, stopn), path_oms = spectrum_selection(pth + rpth, oms_list, requested_m, requested_n) # if requested n and m concern already occupied spectrum the previous function returns a None candidate # if not None, center_n and start, stop frequencies are applicable to all oms of pth # checks that spectrum is not None else indicate blocking reason if center_n is not None: for oms_elem in path_oms: oms_list[oms_elem].assign_spectrum(center_n, requested_m) oms_list[oms_elem].add_service(rq.request_id, nb_wl) rq.N = center_n rq.M = requested_m else: rq.N = None rq.M = None rq.blocking_reason = 'NO_SPECTRUM'