#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ gnpy.tools.json_io ================== Loading and saving data from JSON files in GNPy's internal data format """ from networkx import DiGraph from logging import getLogger from pathlib import Path import json from collections import namedtuple from numpy import arange from copy import deepcopy from gnpy.core import elements from gnpy.core.equipment import trx_mode_params, find_type_variety from gnpy.core.exceptions import ConfigurationError, EquipmentConfigError, NetworkTopologyError, ServiceError from gnpy.core.science_utils import estimate_nf_model from gnpy.core.info import Carrier from gnpy.core.utils import automatic_nch, automatic_fmax, merge_amplifier_restrictions, dbm2watt from gnpy.core.parameters import DEFAULT_RAMAN_COEFFICIENT, EdfaParams, MultiBandParams from gnpy.topology.request import PathRequest, Disjunction, compute_spectrum_slot_vs_bandwidth from gnpy.topology.spectrum_assignment import mvalue_to_slots from gnpy.tools.convert import xls_to_json_data from gnpy.tools.service_sheet import read_service_sheet _logger = getLogger(__name__) Model_vg = namedtuple('Model_vg', 'nf1 nf2 delta_p orig_nf_min orig_nf_max') Model_fg = namedtuple('Model_fg', 'nf0') Model_openroadm_ila = namedtuple('Model_openroadm_ila', 'nf_coef') Model_hybrid = namedtuple('Model_hybrid', 'nf_ram gain_ram edfa_variety') Model_dual_stage = namedtuple('Model_dual_stage', 'preamp_variety booster_variety') class Model_openroadm_preamp: pass class Model_openroadm_booster: pass class _JsonThing: def update_attr(self, default_values, kwargs, name): clean_kwargs = {k: v for k, v in kwargs.items() if v != ''} for k, v in default_values.items(): setattr(self, k, clean_kwargs.get(k, v)) if k not in clean_kwargs and name != 'Amp' and v is not None and v != []: # do not show this warning if the default value is None msg = f'\n\tWARNING missing {k} attribute in eqpt_config.json[{name}]' \ + f'\n\tdefault value is {k} = {v}\n' _logger.warning(msg) class SI(_JsonThing): default_values = { "f_min": 191.35e12, "f_max": 196.1e12, "baud_rate": 32e9, "spacing": 50e9, "power_dbm": 0, "power_range_db": [0, 0, 0.5], "roll_off": 0.15, "tx_osnr": 45, "sys_margins": 0, "tx_power_dbm": None # optional value in SI } def __init__(self, **kwargs): self.update_attr(self.default_values, kwargs, 'SI') class Span(_JsonThing): default_values = { 'power_mode': True, 'delta_power_range_db': None, 'max_fiber_lineic_loss_for_raman': 0.25, 'target_extended_gain': 2.5, 'max_length': 150, 'length_units': 'km', 'max_loss': None, 'padding': 10, 'EOL': 0, 'con_in': 0, 'con_out': 0 } def __init__(self, **kwargs): self.update_attr(self.default_values, kwargs, 'Span') class Roadm(_JsonThing): default_values = { 'type_variety': 'default', 'add_drop_osnr': 100, 'pmd': 0, 'pdl': 0, 'restrictions': { 'preamp_variety_list': [], 'booster_variety_list': [] }, 'roadm-path-impairments': [] } def __init__(self, **kwargs): # If equalization is not defined in equipment, then raise an error. # Only one type of equalization must be defined. allowed_equalisations = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth'] requested_eq_mask = [eq in kwargs for eq in allowed_equalisations] if sum(requested_eq_mask) > 1: msg = 'Only one equalization type should be set in ROADM, found: ' \ + ', '.join(eq for eq in allowed_equalisations if eq in kwargs) raise EquipmentConfigError(msg) if not any(requested_eq_mask): msg = 'No equalization type set in ROADM' raise EquipmentConfigError(msg) for key in allowed_equalisations: if key in kwargs: setattr(self, key, kwargs[key]) break self.update_attr(self.default_values, kwargs, 'Roadm') class Transceiver(_JsonThing): default_values = { 'type_variety': None, 'frequency': None, 'mode': {} } def __init__(self, **kwargs): self.update_attr(self.default_values, kwargs, 'Transceiver') for mode_params in self.mode: penalties = mode_params.get('penalties') mode_params['penalties'] = {} mode_params['equalization_offset_db'] = mode_params.get('equalization_offset_db', 0) if not penalties: continue for impairment in ('chromatic_dispersion', 'pmd', 'pdl'): imp_penalties = [p for p in penalties if impairment in p] if not imp_penalties: continue if all(p[impairment] > 0 for p in imp_penalties): # make sure the list of penalty values include a proper lower boundary # (we assume 0 penalty for 0 impairment) imp_penalties.insert(0, {impairment: 0, 'penalty_value': 0}) # make sure the list of penalty values are sorted by impairment value imp_penalties.sort(key=lambda i: i[impairment]) # rearrange as dict of lists instead of list of dicts mode_params['penalties'][impairment] = { 'up_to_boundary': [p[impairment] for p in imp_penalties], 'penalty_value': [p['penalty_value'] for p in imp_penalties] } class Fiber(_JsonThing): default_values = { 'type_variety': '', 'dispersion': None, 'effective_area': None, 'pmd_coef': 0 } def __init__(self, **kwargs): self.update_attr(self.default_values, kwargs, self.__class__.__name__) if 'gamma' in kwargs: setattr(self, 'gamma', kwargs['gamma']) if 'raman_efficiency' in kwargs: raman_coefficient = kwargs['raman_efficiency'] cr = raman_coefficient.pop('cr') raman_coefficient['g0'] = cr raman_coefficient['reference_frequency'] = DEFAULT_RAMAN_COEFFICIENT['reference_frequency'] setattr(self, 'raman_coefficient', raman_coefficient) class RamanFiber(Fiber): pass class Amp(_JsonThing): default_values = EdfaParams.default_values def __init__(self, **kwargs): self.update_attr(self.default_values, kwargs, 'Amp') @classmethod def from_json(cls, filename, **kwargs): config = Path(filename).parent / 'default_edfa_config.json' # default_edfa_config.json assumes a DGT profile independantly from fmin/fmax, that's a generic profile type_variety = kwargs['type_variety'] type_def = kwargs.get('type_def', 'variable_gain') # default compatibility with older json eqpt files nf_def = None dual_stage_def = None amplifiers = None if type_def == 'fixed_gain': try: nf0 = kwargs.pop('nf0') except KeyError: # nf0 is expected for a fixed gain amp msg = f'missing nf0 value input for amplifier: {type_variety} in equipment config' raise EquipmentConfigError(msg) for k in ('nf_min', 'nf_max'): try: del kwargs[k] except KeyError: pass nf_def = Model_fg(nf0) elif type_def == 'advanced_model': config = Path(filename).parent / kwargs.pop('advanced_config_from_json') elif type_def == 'variable_gain': gain_min, gain_max = kwargs['gain_min'], kwargs['gain_flatmax'] try: # nf_min and nf_max are expected for a variable gain amp nf_min = kwargs.pop('nf_min') nf_max = kwargs.pop('nf_max') except KeyError: msg = f'missing nf_min or nf_max value input for amplifier: {type_variety} in equipment config' raise EquipmentConfigError(msg) try: # remove all remaining nf inputs del kwargs['nf0'] except KeyError: pass # nf0 is not needed for variable gain amp nf1, nf2, delta_p = estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max) nf_def = Model_vg(nf1, nf2, delta_p, nf_min, nf_max) elif type_def == 'openroadm': try: nf_coef = kwargs.pop('nf_coef') except KeyError: # nf_coef is expected for openroadm amp raise EquipmentConfigError(f'missing nf_coef input for amplifier: {type_variety} in equipment config') nf_def = Model_openroadm_ila(nf_coef) elif type_def == 'openroadm_preamp': nf_def = Model_openroadm_preamp() elif type_def == 'openroadm_booster': nf_def = Model_openroadm_booster() elif type_def == 'dual_stage': try: # nf_ram and gain_ram are expected for a hybrid amp preamp_variety = kwargs.pop('preamp_variety') booster_variety = kwargs.pop('booster_variety') except KeyError: raise EquipmentConfigError(f'missing preamp/booster variety input for amplifier: {type_variety}' + ' in equipment config') dual_stage_def = Model_dual_stage(preamp_variety, booster_variety) elif type_def == 'multi_band': amplifiers = kwargs['amplifiers'] else: raise EquipmentConfigError(f'Edfa type_def {type_def} does not exist') json_data = load_json(config) # raise an error if config does not contain f_min, f_max if 'f_min' not in json_data or 'f_max' not in json_data: raise EquipmentConfigError('default Edfa config does not contain f_min and f_max values.' + ' Please correct file.') # use f_min, f_max from kwargs if 'f_min' in kwargs: json_data.pop('f_min', None) json_data.pop('f_max', None) return cls(**{**kwargs, **json_data, 'nf_model': nf_def, 'dual_stage_model': dual_stage_def, 'multi_band': amplifiers}) def _automatic_spacing(baud_rate): """return the min possible channel spacing for a given baud rate""" # TODO : this should parametrized in a cfg file # list of possible tuples [(max_baud_rate, spacing_for_this_baud_rate)] spacing_list = [(33e9, 37.5e9), (38e9, 50e9), (50e9, 62.5e9), (67e9, 75e9), (92e9, 100e9)] return min((s[1] for s in spacing_list if s[0] > baud_rate), default=baud_rate * 1.2) def _spectrum_from_json(json_data): """JSON_data is a list of spectrum partitions each with {f_min, f_max, baud_rate, roll_off, delta_pdb, slot_width, tx_osnr, label} Creates the per freq Carrier's dict. f_min, f_max, baud_rate, slot_width and roll_off are mandatory label, tx_osnr and delta_pdb are created if not present label should be different for each partition >>> json_data = {'spectrum': \ [{'f_min': 193.2e12, 'f_max': 193.4e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15, \ 'delta_pdb': 1, 'tx_osnr': 45, 'tx_power_dbm': -7},\ {'f_min': 193.4625e12, 'f_max': 193.9875e12, 'slot_width': 75e9, 'baud_rate': 64e9, 'roll_off': 0.15},\ {'f_min': 194.075e12, 'f_max': 194.075e12, 'slot_width': 100e9, 'baud_rate': 90e9, 'roll_off': 0.15},\ {'f_min': 194.2e12, 'f_max': 194.35e12, 'slot_width': 50e9, 'baud_rate': 32e9, 'roll_off': 0.15}]} >>> spectrum = _spectrum_from_json(json_data['spectrum']) >>> for k, v in spectrum.items(): ... print(f'{k}: {v}') ... 193200000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G') 193250000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G') 193300000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G') 193350000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G') 193400000000000.0: Carrier(delta_pdb=1, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=45, tx_power=0.00019952623149688798, label='0-32.00G') 193462500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193537500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193612500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193687500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193762500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193837500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193912500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 193987500000000.0: Carrier(delta_pdb=0, baud_rate=64000000000.0, slot_width=75000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='1-64.00G') 194075000000000.0: Carrier(delta_pdb=0, baud_rate=90000000000.0, slot_width=100000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='2-90.00G') 194200000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G') 194250000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G') 194300000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G') 194350000000000.0: Carrier(delta_pdb=0, baud_rate=32000000000.0, slot_width=50000000000.0, roll_off=0.15, tx_osnr=40, tx_power=0.001, label='3-32.00G') """ spectrum = {} json_data = sorted(json_data, key=lambda x: x['f_min']) # min freq of occupation is f_min - slot_width/2 (numbering starts at 0) previous_part_max_freq = 0.0 for index, part in enumerate(json_data): # default delta_pdb is 0 dB if 'delta_pdb' not in part: part['delta_pdb'] = 0 # add a label to the partition for the printings if 'label' not in part: part['label'] = f'{index}-{part["baud_rate"] * 1e-9 :.2f}G' # default tx_osnr is set to 40 dB if 'tx_osnr' not in part: part['tx_osnr'] = 40 # default tx_power_dbm is set to 0 dBn if 'tx_power_dbm' not in part: part['tx_power_dbm'] = 0 # starting freq is exactly f_min to be consistent with utils.automatic_nch # first partition min occupation is f_min - slot_width / 2 (central_frequency is f_min) # supposes that carriers are centered on frequency if previous_part_max_freq > (part['f_min'] - part['slot_width'] / 2): # check that previous part last channel does not overlap on next part first channel # max center of the part should be below part['f_max'] and aligned on the slot_width msg = 'Not a valid initial spectrum definition:\nprevious spectrum last carrier max occupation ' +\ f'{previous_part_max_freq * 1e-12 :.5f}GHz ' +\ 'overlaps on next spectrum first carrier occupation ' +\ f'{(part["f_min"] - part["slot_width"] / 2) * 1e-12 :.5f}GHz' raise ValueError(msg) max_range = ((part['f_max'] - part['f_min']) // part['slot_width'] + 1) * part['slot_width'] for current_freq in arange(part['f_min'], part['f_min'] + max_range, part['slot_width']): spectrum[current_freq] = Carrier(delta_pdb=part['delta_pdb'], baud_rate=part['baud_rate'], slot_width=part['slot_width'], roll_off=part['roll_off'], tx_osnr=part['tx_osnr'], tx_power=dbm2watt(part['tx_power_dbm']), label=part['label']) previous_part_max_freq = current_freq + part['slot_width'] / 2 return spectrum def load_equipment(filename): json_data = load_json(filename) return _equipment_from_json(json_data, filename) def load_initial_spectrum(filename): json_data = load_json(filename) return _spectrum_from_json(json_data['spectrum']) def _update_dual_stage(equipment): edfa_dict = equipment['Edfa'] for edfa in edfa_dict.values(): if edfa.type_def == 'dual_stage': edfa_preamp = edfa_dict[edfa.dual_stage_model.preamp_variety] edfa_booster = edfa_dict[edfa.dual_stage_model.booster_variety] for key, value in edfa_preamp.__dict__.items(): attr_k = 'preamp_' + key setattr(edfa, attr_k, value) for key, value in edfa_booster.__dict__.items(): attr_k = 'booster_' + key setattr(edfa, attr_k, value) edfa.p_max = edfa_booster.p_max edfa.gain_flatmax = edfa_booster.gain_flatmax + edfa_preamp.gain_flatmax if edfa.gain_min < edfa_preamp.gain_min: raise EquipmentConfigError(f'Dual stage {edfa.type_variety} minimal gain is lower than its preamp minimal gain') return equipment def _update_band(equipment: dict) -> dict: """Creates a list of bands for this amplifier, and remove other parameters which are not applicable """ amp_dict = equipment['Edfa'] for amplifier in amp_dict.values(): if amplifier.type_def != 'multi_band': amplifier.bands = [{'f_min': amplifier.f_min, 'f_max': amplifier.f_max}] # updates band parameter else: _bands = [{'f_min': amp_dict[a].f_min, 'f_max': amp_dict[a].f_max} for a in amp_dict[amplifier.type_variety].multi_band] # remove duplicates amplifier.bands = [] for b in _bands: if b not in amplifier.bands: amplifier.bands.append(b) # remove non applicable parameters for key in ['f_min', 'f_max', 'gain_flatmax', 'gain_min', 'p_max', 'nf_model', 'dual_stage_model', 'nf_fit_coeff', 'nf_ripple', 'dgt', 'gain_ripple']: delattr(amplifier, key) return equipment def _roadm_restrictions_sanity_check(equipment): """verifies that booster and preamp restrictions specified in roadm equipment are listed in the edfa.""" for roadm_type, roadm_eqpt in equipment['Roadm'].items(): restrictions = roadm_eqpt.restrictions['booster_variety_list'] + \ roadm_eqpt.restrictions['preamp_variety_list'] for amp_name in restrictions: if amp_name not in equipment['Edfa']: raise EquipmentConfigError(f'ROADM {roadm_type} restriction {amp_name} does not refer to a ' + 'defined EDFA name') def _check_fiber_vs_raman_fiber(equipment): """Ensure that Fiber and RamanFiber with the same name define common properties equally""" if 'RamanFiber' not in equipment: return for fiber_type in set(equipment['Fiber'].keys()) & set(equipment['RamanFiber'].keys()): for attr in ('dispersion', 'dispersion-slope', 'effective_area', 'gamma', 'pmd-coefficient'): fiber = equipment['Fiber'][fiber_type] raman = equipment['RamanFiber'][fiber_type] a = getattr(fiber, attr, None) b = getattr(raman, attr, None) if a != b: raise EquipmentConfigError(f'WARNING: Fiber and RamanFiber definition of "{fiber_type}" ' f'disagrees for "{attr}": {a} != {b}') def _equipment_from_json(json_data, filename): """build global dictionnary eqpt_library that stores all eqpt characteristics: edfa type type_variety, fiber type_variety from the eqpt_config.json (filename parameter) also read advanced_config_from_json file parameters for edfa if they are available: typically nf_ripple, dfg gain ripple, dgt and nf polynomial nf_fit_coeff if advanced_config_from_json file parameter is not present: use nf_model: requires nf_min and nf_max values boundaries of the edfa gain range """ equipment = {} for key, entries in json_data.items(): equipment[key] = {} for entry in entries: subkey = entry.get('type_variety', 'default') if key == 'Edfa': equipment[key][subkey] = Amp.from_json(filename, **entry) elif key == 'Fiber': equipment[key][subkey] = Fiber(**entry) elif key == 'Span': equipment[key][subkey] = Span(**entry) elif key == 'Roadm': equipment[key][subkey] = Roadm(**entry) elif key == 'SI': # use power_dbm value for tx_power_dbm if the key is not in 'SI' # if 'tx_power_dbm' not in entry.keys(): # entry['tx_power_dbm'] = entry['power_dbm'] equipment[key][subkey] = SI(**entry) elif key == 'Transceiver': equipment[key][subkey] = Transceiver(**entry) elif key == 'RamanFiber': equipment[key][subkey] = RamanFiber(**entry) else: raise EquipmentConfigError(f'Unrecognized network element type "{key}"') _check_fiber_vs_raman_fiber(equipment) equipment = _update_dual_stage(equipment) equipment = _update_band(equipment) _roadm_restrictions_sanity_check(equipment) possible_SI = list(equipment['SI'].keys()) if 'default' not in possible_SI: # Use "default" key in the equipment, using the first listed keys equipment['SI']['default'] = equipment['SI'][possible_SI[0]] del equipment['SI'][possible_SI[0]] return equipment def load_network(filename, equipment): if filename.suffix.lower() in ('.xls', '.xlsx'): json_data = xls_to_json_data(filename) elif filename.suffix.lower() == '.json': json_data = load_json(filename) else: raise ValueError(f'unsupported topology filename extension {filename.suffix.lower()}') return network_from_json(json_data, equipment) def save_network(network: DiGraph, filename: str): """Dump the network into a JSON file :param network: network to work on :param filename: file to write to """ save_json(network_to_json(network), filename) def _cls_for(equipment_type): if equipment_type == 'Edfa': return elements.Edfa if equipment_type == 'Fused': return elements.Fused elif equipment_type == 'Roadm': return elements.Roadm elif equipment_type == 'Transceiver': return elements.Transceiver elif equipment_type == 'Fiber': return elements.Fiber elif equipment_type == 'RamanFiber': return elements.RamanFiber elif equipment_type == 'Multiband_amplifier': return elements.Multiband_amplifier else: raise ConfigurationError(f'Unknown network equipment "{equipment_type}"') def network_from_json(json_data, equipment): # NOTE|dutc: we could use the following, but it would tie our data format # too closely to the graph library # from networkx import node_link_graph g = DiGraph() for el_config in json_data['elements']: typ = el_config.pop('type') variety = el_config.pop('type_variety', 'default') cls = _cls_for(typ) if typ == 'Transceiver': temp = el_config.setdefault('params', {}) if typ == 'Multiband_amplifier': if variety in ['default', '']: extra_params = None temp = el_config.setdefault('params', {}) temp = merge_amplifier_restrictions(temp, deepcopy(MultiBandParams.default_values)) el_config['params'] = temp else: extra_params = equipment['Edfa'][variety] temp = el_config.setdefault('params', {}) # use config params preferably to library params, only use library params to fill in # the missing attribute temp = merge_amplifier_restrictions(temp, deepcopy(extra_params.__dict__)) el_config['params'] = temp el_config['type_variety'] = variety # if config does not contain any amp list create one amps = el_config.setdefault('amplifiers', []) for amp in amps: amp_variety = amp['type_variety'] # juste pour essayer amp_extra_params = equipment['Edfa'][amp_variety] temp = amp.setdefault('params', {}) temp = merge_amplifier_restrictions(temp, amp_extra_params.__dict__) amp['params'] = temp amp['type_variety'] = amp_variety # check type_variety consistant with amps type_variety if amps: try: multiband_type_variety = find_type_variety([a['type_variety'] for a in amps], equipment) except ConfigurationError as e: msg = f'Node {el_config["uid"]}: {e}' raise ConfigurationError(msg) if variety is not None and variety != multiband_type_variety: raise ConfigurationError(f'In node {el_config["uid"]}: multiband amplifier type_variety is not ' + 'consistent with its amps type varieties.') if not amps and extra_params is not None: # the amp config does not contain the amplifiers operational settings, but has a type_variety # defined so that it is possible to create the template of amps for design for each band. This # defines the default design bands. # This lopp populates each amp with default values, for each band for band in extra_params.bands: params = {k: v for k, v in Amp.default_values.items()} # update frequencies with band values params['f_min'] = band['f_min'] params['f_max'] = band['f_max'] amps.append({'params': params}) # without type_variety, it is not possible to set the amplifier dict at this point: need to wait # for design, and use user defined design-bands elif typ == 'Fused': # well, there's no variety for the 'Fused' node type pass elif variety in equipment[typ]: extra_params = equipment[typ][variety].__dict__ temp = el_config.setdefault('params', {}) if typ == 'Roadm': # if equalization is defined, remove default equalization from the extra_params # If equalisation is not defined in the element config, then use the default one from equipment # if more than one equalization was defined in element config, then raise an error extra_params = merge_equalization(temp, extra_params) if not extra_params: msg = f'ROADM {el_config["uid"]}: invalid equalization settings' raise ConfigurationError(msg) temp = merge_amplifier_restrictions(temp, extra_params) el_config['params'] = temp el_config['type_variety'] = variety elif (typ in ['Fiber', 'RamanFiber', 'Roadm']): raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:' '\nplease check it is properly defined in the eqpt_config json file') elif typ == 'Edfa': if variety in ['default', '']: el_config['params'] = Amp.default_values else: raise ConfigurationError(f'The Edfa of variety type {variety} was not recognized:' '\nplease check it is properly defined in the eqpt_config json file') el = cls(**el_config) g.add_node(el) nodes = {k.uid: k for k in g.nodes()} for cx in json_data['connections']: from_node, to_node = cx['from_node'], cx['to_node'] try: if isinstance(nodes[from_node], elements.Fiber): edge_length = nodes[from_node].params.length else: edge_length = 0.01 g.add_edge(nodes[from_node], nodes[to_node], weight=edge_length) except KeyError: msg = f'can not find {from_node} or {to_node} defined in {cx}' raise NetworkTopologyError(msg) return g def network_to_json(network): data = { 'elements': [n.to_json for n in network] } connections = { 'connections': [{"from_node": n.uid, "to_node": next_n.uid} for n in network for next_n in network.successors(n) if next_n is not None] } data.update(connections) return data def load_json(filename): with open(filename, 'r', encoding='utf-8') as f: data = json.load(f) return data def save_json(obj, filename): with open(filename, 'w', encoding='utf-8') as f: json.dump(obj, f, indent=2, ensure_ascii=False) def load_requests(filename, eqpt, bidir, network, network_filename): """loads the requests from a json or an excel file into a data string""" if filename.suffix.lower() in ('.xls', '.xlsx'): _logger.info('Automatically converting requests from XLS to JSON') try: return convert_service_sheet(filename, eqpt, network, network_filename=network_filename, bidir=bidir) except ServiceError as this_e: raise ServiceError(f'Service error: {this_e}') else: return load_json(filename) def requests_from_json(json_data, equipment): """Extract list of requests from data parsed from JSON""" requests_list = [] for req in json_data['path-request']: # init all params from request params = {} params['request_id'] = f'{req["request-id"]}' params['source'] = req['source'] params['bidir'] = req['bidirectional'] params['destination'] = req['destination'] params['trx_type'] = req['path-constraints']['te-bandwidth']['trx_type'] if params['trx_type'] is None: msg = f'Request {req["request-id"]} has no transceiver type defined.' raise ServiceError(msg) params['trx_mode'] = req['path-constraints']['te-bandwidth'].get('trx_mode', None) params['format'] = params['trx_mode'] params['spacing'] = req['path-constraints']['te-bandwidth']['spacing'] try: nd_list = sorted(req['explicit-route-objects']['route-object-include-exclude'], key=lambda x: x['index']) except KeyError: nd_list = [] params['nodes_list'] = [n['num-unnum-hop']['node-id'] for n in nd_list] params['loose_list'] = [n['num-unnum-hop']['hop-type'] for n in nd_list] # recover trx physical param (baudrate, ...) from type and mode # nb_channel is computed based on min max frequency and spacing try: trx_params = trx_mode_params(equipment, params['trx_type'], params['trx_mode'], True) except EquipmentConfigError as e: msg = f'Equipment Config error in {req["request-id"]}: {e}' raise EquipmentConfigError(msg) from e params.update(trx_params) params['power'] = req['path-constraints']['te-bandwidth'].get('output-power') # params must not be None, but user can set to None: catch this case if params['power'] is None: params['power'] = dbm2watt(equipment['SI']['default'].power_dbm) # same process for nb-channel f_min = params['f_min'] f_max_from_si = params['f_max'] try: if req['path-constraints']['te-bandwidth']['max-nb-of-channel'] is not None: nch = req['path-constraints']['te-bandwidth']['max-nb-of-channel'] params['nb_channel'] = nch spacing = params['spacing'] params['f_max'] = automatic_fmax(f_min, spacing, nch) else: params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing']) except KeyError: params['nb_channel'] = automatic_nch(f_min, f_max_from_si, params['spacing']) params['effective_freq_slot'] = \ req['path-constraints']['te-bandwidth'].get('effective-freq-slot', [{'N': None, 'M': None}]) try: params['path_bandwidth'] = req['path-constraints']['te-bandwidth']['path_bandwidth'] except KeyError: pass params['tx_power'] = req['path-constraints']['te-bandwidth'].get('tx_power') default_tx_power_dbm = equipment['SI']['default'].tx_power_dbm if params['tx_power'] is None: # use request's input power in span instead params['tx_power'] = params['power'] if default_tx_power_dbm is not None: # use default tx power params['tx_power'] = dbm2watt(default_tx_power_dbm) _check_one_request(params, f_max_from_si) requests_list.append(PathRequest(**params)) return requests_list def _check_one_request(params, f_max_from_si): """Checks that the requested parameters are consistant (spacing vs nb channel vs transponder mode...)""" f_min = params['f_min'] f_max = params['f_max'] max_recommanded_nb_channels = automatic_nch(f_min, f_max_from_si, params['spacing']) if params['baud_rate'] is not None: # implicitly means that a mode is defined with min_spacing if params['min_spacing'] > params['spacing']: msg = f'Request {params["request_id"]} has spacing below transponder ' +\ f'{params["trx_type"]} {params["trx_mode"]} min spacing value ' +\ f'{params["min_spacing"]*1e-9}GHz.\nComputation stopped' raise ServiceError(msg) if f_max > f_max_from_si: msg = f'Requested channel number {params["nb_channel"]}, baud rate {params["baud_rate"] * 1e-9} GHz' \ + f' and requested spacing {params["spacing"]*1e-9}GHz is not consistent with frequency range' \ + f' {f_min*1e-12} THz, {f_max_from_si*1e-12} THz.' \ + f' Max recommanded nb of channels is {max_recommanded_nb_channels}.' raise ServiceError(msg) # Transponder mode already selected; will it fit to the requested bandwidth? if params['trx_mode'] is not None and params['effective_freq_slot'] is not None: required_nb_of_channels, requested_m = compute_spectrum_slot_vs_bandwidth(params['path_bandwidth'], params['spacing'], params['bit_rate']) _, per_channel_m = compute_spectrum_slot_vs_bandwidth(params['bit_rate'], params['spacing'], params['bit_rate']) # each M should fit one or more channels if it is not None # spectrum slots should not overlap # resulting nb of channels should be bigger than the nb computed with path_bandwidth # without being splitted # TODO: elaborate a more accurate estimate with nb_wl * tx_osnr + possibly guardbands in case of # superchannel closed packing. nb_of_channels = 0 # order slots slots = sorted(params['effective_freq_slot'], key=lambda x: float('inf') if x['N'] is None else x['N']) for slot in slots: nb_of_channels = nb_of_channels + slot['M'] // per_channel_m if slot['M'] is not None \ and nb_of_channels is not None else None if slot['M'] is not None and slot['M'] < per_channel_m: msg = f'Requested M {slot} number of slots for request' +\ f' {params["request_id"]} should be greater than {per_channel_m} to support request' +\ f'with {params["trx_type"]} {params["trx_mode"]}' _logger.critical(msg) if nb_of_channels is not None and nb_of_channels < required_nb_of_channels: msg = f'Requested M {slots} number of slots for request {params["request_id"]} support {nb_of_channels}' +\ f' nb of channels while {required_nb_of_channels} are required to support request' +\ f' {params["path_bandwidth"] * 1e-9} Gbit/s with {params["trx_type"]} {params["trx_mode"]}' raise ServiceError(msg) if nb_of_channels is not None: _, stop0n = mvalue_to_slots(slots[0]['N'], slots[0]['M']) i = 1 while i < len(slots): slot = slots[i] startn, stopn = mvalue_to_slots(slot['N'], slot['M']) if startn <= stop0n: msg = f'Requested M {slots} for request {params["request_id"]} overlap' raise ServiceError(msg) _, stop0n = startn, stopn i += 1 def disjunctions_from_json(json_data): """reads the disjunction requests from the json dict and create the list of requested disjunctions for this set of requests """ disjunctions_list = [] if 'synchronization' in json_data: for snc in json_data['synchronization']: params = {} params['disjunction_id'] = snc['synchronization-id'] params['relaxable'] = snc['svec']['relaxable'] params['link_diverse'] = 'link' in snc['svec']['disjointness'] params['node_diverse'] = 'node' in snc['svec']['disjointness'] params['disjunctions_req'] = snc['svec']['request-id-number'] disjunctions_list.append(Disjunction(**params)) return disjunctions_list def convert_service_sheet( input_filename, eqpt, network, network_filename=None, output_filename='', bidir=False): if output_filename == '': output_filename = f'{str(input_filename)[0:len(str(input_filename))-len(str(input_filename.suffixes[0]))]}_services.json' data = read_service_sheet(input_filename, eqpt, network, network_filename, bidir) save_json(data, output_filename) return data def find_equalisation(params, equalization_types): """Find the equalization(s) defined in params. params can be a dict or a Roadm object. >>> roadm = {'add_drop_osnr': 100, 'pmd': 1, 'pdl': 0.5, ... 'restrictions': {'preamp_variety_list': ['a'], 'booster_variety_list': ['b']}, ... 'target_psd_out_mWperGHz': 4e-4} >>> equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz'] >>> find_equalisation(roadm, equalization_types) {'target_pch_out_db': False, 'target_psd_out_mWperGHz': True} """ equalization = {e: False for e in equalization_types} for equ in equalization_types: if equ in params: equalization[equ] = True return equalization def merge_equalization(params, extra_params): """params contains ROADM element config and extra_params default values from equipment library. If equalization is not defined in ROADM element use the one defined in equipment library. Only one type of equalization must be defined: power (target_pch_out_db) or PSD (target_psd_out_mWperGHz) or PSW (target_out_mWperSlotWidth) params and extra_params are dict """ equalization_types = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth'] roadm_equalizations = find_equalisation(params, equalization_types) if sum(roadm_equalizations.values()) > 1: # if ROADM config contains more than one equalization type then this is an error return None if sum(roadm_equalizations.values()) == 1: # if ROADM config contains one equalization # don't use the default equalization return {k: v for k, v in extra_params.items() if k not in equalization_types} if sum(roadm_equalizations.values()) == 0: # If ROADM config doesn't contain any equalization type, keep the default one return extra_params return None