mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-31 18:18:00 +00:00
Introduce a new multi-band element that contains a list of Edfa element: - reads multiple amps out of the element config. - deduces frequency band from the amp in the list. no autodesign yet: multi-band amps must have type_variety. - checks that type variety of individual EDFAs is consistent with multiband type variety - demux and mux spectrum when propagate in multiband - don't add a preamp or booster if a multiband amp is already defined. The print of channel number is removed from equipment, since the channel number may now depend on the path's amplifiers. This changes invocation results layout. Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com> Change-Id: I44e77ff82e622cdee4021a7984d660317cb90cf9
673 lines
29 KiB
Python
673 lines
29 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
|
||
"""
|
||
gnpy.core.parameters
|
||
====================
|
||
|
||
This module contains all parameters to configure standard network elements.
|
||
"""
|
||
from collections import namedtuple
|
||
from copy import deepcopy
|
||
from dataclasses import dataclass
|
||
from scipy.constants import c, pi
|
||
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
|
||
|
||
from gnpy.core.utils import convert_length
|
||
from gnpy.core.exceptions import ParametersError
|
||
|
||
|
||
class Parameters:
|
||
def asdict(self):
|
||
class_dict = self.__class__.__dict__
|
||
instance_dict = self.__dict__
|
||
new_dict = {}
|
||
for key in class_dict:
|
||
if isinstance(class_dict[key], property):
|
||
new_dict[key] = instance_dict['_' + key]
|
||
return new_dict
|
||
|
||
|
||
class PumpParams(Parameters):
|
||
def __init__(self, power, frequency, propagation_direction):
|
||
self.power = power
|
||
self.frequency = frequency
|
||
self.propagation_direction = propagation_direction.lower()
|
||
|
||
|
||
class RamanParams(Parameters):
|
||
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
|
||
"""Simulation parameters used within the Raman Solver
|
||
|
||
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
|
||
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
|
||
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
|
||
"""
|
||
self.flag = flag
|
||
self.result_spatial_resolution = result_spatial_resolution # [m]
|
||
self.solver_spatial_resolution = solver_spatial_resolution # [m]
|
||
|
||
def to_json(self):
|
||
return {"flag": self.flag,
|
||
"result_spatial_resolution": self.result_spatial_resolution,
|
||
"solver_spatial_resolution": self.solver_spatial_resolution}
|
||
|
||
|
||
class NLIParams(Parameters):
|
||
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
|
||
computed_channels=None, computed_number_of_channels=None):
|
||
"""Simulation parameters used within the Nli Solver
|
||
|
||
:params method: formula for NLI calculation
|
||
:params dispersion_tolerance: tuning parameter for ggn model solution
|
||
:params phase_shift_tolerance: tuning parameter for ggn model solution
|
||
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
|
||
:params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
|
||
in the spectrum and extrapolated for the others
|
||
"""
|
||
self.method = method.lower()
|
||
self.dispersion_tolerance = dispersion_tolerance
|
||
self.phase_shift_tolerance = phase_shift_tolerance
|
||
self.computed_channels = computed_channels
|
||
self.computed_number_of_channels = computed_number_of_channels
|
||
|
||
def to_json(self):
|
||
return {"method": self.method,
|
||
"dispersion_tolerance": self.dispersion_tolerance,
|
||
"phase_shift_tolerance": self.phase_shift_tolerance,
|
||
"computed_channels": self.computed_channels,
|
||
"computed_number_of_channels": self.computed_number_of_channels}
|
||
|
||
|
||
class SimParams(Parameters):
|
||
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
|
||
|
||
@classmethod
|
||
def set_params(cls, sim_params):
|
||
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
|
||
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
|
||
|
||
@property
|
||
def nli_params(self):
|
||
return self._shared_dict['nli_params']
|
||
|
||
@property
|
||
def raman_params(self):
|
||
return self._shared_dict['raman_params']
|
||
|
||
|
||
class RoadmParams(Parameters):
|
||
def __init__(self, **kwargs):
|
||
self.target_pch_out_db = kwargs.get('target_pch_out_db')
|
||
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
|
||
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
|
||
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
|
||
temp = [kwargs.get(k) is not None for k in equalisation_type]
|
||
if sum(temp) > 1:
|
||
raise ParametersError('ROADM config contains more than one equalisation type.'
|
||
+ 'Please choose only one', kwargs)
|
||
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
|
||
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
|
||
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
|
||
try:
|
||
self.add_drop_osnr = kwargs['add_drop_osnr']
|
||
self.pmd = kwargs['pmd']
|
||
self.pdl = kwargs['pdl']
|
||
self.restrictions = kwargs['restrictions']
|
||
self.roadm_path_impairments = self.get_roadm_path_impairments(kwargs['roadm-path-impairments'])
|
||
except KeyError as e:
|
||
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
|
||
self.per_degree_impairments = kwargs.get('per_degree_impairments', [])
|
||
|
||
def get_roadm_path_impairments(self, path_impairments_list):
|
||
"""Get the ROADM list of profiles for impairments definition
|
||
|
||
transform the ietf model into gnpy internal model: add a path-type in the attributes
|
||
"""
|
||
if not path_impairments_list:
|
||
return {}
|
||
authorized_path_types = {
|
||
'roadm-express-path': 'express',
|
||
'roadm-add-path': 'add',
|
||
'roadm-drop-path': 'drop',
|
||
}
|
||
roadm_path_impairments = {}
|
||
for path_impairment in path_impairments_list:
|
||
index = path_impairment['roadm-path-impairments-id']
|
||
path_type = next(key for key in path_impairment if key in authorized_path_types.keys())
|
||
impairment_dict = dict({'path-type': authorized_path_types[path_type]}, **path_impairment[path_type][0])
|
||
roadm_path_impairments[index] = RoadmImpairment(impairment_dict)
|
||
return roadm_path_impairments
|
||
|
||
|
||
class RoadmPath:
|
||
def __init__(self, from_degree, to_degree, path_type, impairment_id=None, impairment=None):
|
||
"""Records roadm internal paths, types and impairment
|
||
|
||
path_type must be in "express", "add", "drop"
|
||
impairment_id must be one of the id detailed in equipement
|
||
"""
|
||
self.from_degree = from_degree
|
||
self.to_degree = to_degree
|
||
self.path_type = path_type
|
||
self.impairment_id = impairment_id
|
||
self.impairment = impairment
|
||
|
||
|
||
class RoadmImpairment:
|
||
"""Generic definition of impairments for express, add and drop"""
|
||
def __init__(self, params):
|
||
"""Records roadm internal paths and types"""
|
||
self.path_type = params.get('path-type')
|
||
self.pmd = params.get('roadm-pmd')
|
||
self.cd = params.get('roadm-cd')
|
||
self.pdl = params.get('roadm-pdl')
|
||
self.inband_crosstalk = params.get('roadm-inband-crosstalk')
|
||
self.maxloss = params.get('roadm-maxloss', 0)
|
||
if params.get('frequency-range') is not None:
|
||
self.fmin = params.get('frequency-range')['lower-frequency']
|
||
self.fmax = params.get('frequency-range')['upper-frequency']
|
||
else:
|
||
self.fmin, self.fmax = None, None
|
||
self.osnr = params.get('roadm-osnr', None)
|
||
self.pmax = params.get('roadm-pmax', None)
|
||
self.nf = params.get('roadm-noise-figure', None)
|
||
self.minloss = params.get('minloss', None)
|
||
self.typloss = params.get('typloss', None)
|
||
self.pmin = params.get('pmin', None)
|
||
self.ptyp = params.get('ptyp', None)
|
||
|
||
|
||
class FusedParams(Parameters):
|
||
def __init__(self, **kwargs):
|
||
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
|
||
|
||
|
||
DEFAULT_RAMAN_COEFFICIENT = {
|
||
# SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
|
||
'gamma_raman': array(
|
||
[0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
|
||
7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
|
||
1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
|
||
1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
|
||
1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
|
||
2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
|
||
3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
|
||
3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
|
||
2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
|
||
6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
|
||
7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
|
||
2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
|
||
2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
|
||
5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
|
||
2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
|
||
1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
|
||
7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
|
||
1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
|
||
8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
|
||
9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
|
||
6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
|
||
1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
|
||
7.404482113326137e-18]
|
||
), # m/W
|
||
# SSMF Raman coefficient profile
|
||
'g0': array(
|
||
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
|
||
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
|
||
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
|
||
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
|
||
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
|
||
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
|
||
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
|
||
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
|
||
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
|
||
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
|
||
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
|
||
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
|
||
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
|
||
), # [1 / (W m)]
|
||
|
||
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
|
||
'frequency_offset': array([
|
||
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
|
||
12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
|
||
19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
|
||
29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
|
||
39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12, # [Hz]
|
||
|
||
# Raman profile reference frequency
|
||
'reference_frequency': 206.184634112792e12, # [Hz] (1454 nm)
|
||
|
||
# Raman profile reference effective area
|
||
'reference_effective_area': 75.74659443542413e-12 # [m^2] (@1454 nm)
|
||
}
|
||
|
||
|
||
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
|
||
""" Raman Gain Coefficient Parameters
|
||
|
||
Based on:
|
||
Andrea D’Amico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
|
||
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
|
||
J. Lightwave Technol. 40, 3499-3511 (2022)
|
||
Section III.D
|
||
"""
|
||
|
||
|
||
class FiberParams(Parameters):
|
||
def __init__(self, **kwargs):
|
||
try:
|
||
self._length = convert_length(kwargs['length'], kwargs['length_units'])
|
||
# fixed attenuator for padding
|
||
self._att_in = kwargs.get('att_in', 0)
|
||
# if not defined in the network json connector loss in/out
|
||
# the None value will be updated in network.py[build_network]
|
||
# with default values from eqpt_config.json[Spans]
|
||
self._con_in = kwargs.get('con_in')
|
||
self._con_out = kwargs.get('con_out')
|
||
|
||
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
|
||
if 'ref_wavelength' in kwargs:
|
||
self._ref_wavelength = kwargs['ref_wavelength']
|
||
self._ref_frequency = c / self._ref_wavelength
|
||
elif 'ref_frequency' in kwargs:
|
||
self._ref_frequency = kwargs['ref_frequency']
|
||
self._ref_wavelength = c / self._ref_frequency
|
||
else:
|
||
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
|
||
self._ref_frequency = c / self._ref_wavelength
|
||
|
||
# Chromatic Dispersion
|
||
if 'dispersion_per_frequency' in kwargs:
|
||
# Frequency-dependent dispersion
|
||
self._dispersion = asarray(kwargs['dispersion_per_frequency']['value']) # s/m/m
|
||
self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency']) # Hz
|
||
self._dispersion_slope = None
|
||
elif 'dispersion' in kwargs:
|
||
# Single value dispersion
|
||
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
|
||
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
|
||
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
|
||
else:
|
||
# Default single value dispersion
|
||
self._dispersion = asarray(1.67e-05) # s/m/m
|
||
self._dispersion_slope = None
|
||
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
|
||
|
||
# Effective Area and Nonlinear Coefficient
|
||
self._effective_area = kwargs.get('effective_area') # m^2
|
||
self._n1 = 1.468
|
||
self._core_radius = 4.2e-6 # m
|
||
self._n2 = 2.6e-20 # m^2/W
|
||
if self._effective_area is not None:
|
||
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
|
||
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
|
||
elif 'gamma' in kwargs:
|
||
self._gamma = kwargs['gamma'] # 1/W/m
|
||
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
|
||
else:
|
||
self._effective_area = 83e-12 # m^2
|
||
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
|
||
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
|
||
pi * self._core_radius ** 2 / self._effective_area)) ** 2
|
||
|
||
# Raman Gain Coefficient
|
||
raman_coefficient = kwargs.get('raman_coefficient')
|
||
if raman_coefficient is None:
|
||
self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
|
||
frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
|
||
gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
|
||
stokes_wave = self._raman_reference_frequency - frequency_offset
|
||
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
|
||
self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
|
||
else:
|
||
self._raman_reference_frequency = raman_coefficient['reference_frequency']
|
||
frequency_offset = asarray(raman_coefficient['frequency_offset'])
|
||
stokes_wave = self._raman_reference_frequency - frequency_offset
|
||
self._g0 = asarray(raman_coefficient['g0'])
|
||
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
|
||
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
|
||
|
||
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
|
||
# represent a positive power transfer from higher frequency and vice versa
|
||
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
|
||
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
|
||
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
|
||
|
||
# Polarization Mode Dispersion
|
||
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
|
||
|
||
# Loss Coefficient
|
||
if isinstance(kwargs['loss_coef'], dict):
|
||
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
|
||
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
|
||
else:
|
||
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
|
||
self._f_loss_ref = asarray(self._ref_frequency) # Hz
|
||
# Lumped Losses
|
||
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
|
||
self._latency = self._length / (c / self._n1) # s
|
||
except KeyError as e:
|
||
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
|
||
|
||
@property
|
||
def length(self):
|
||
return self._length
|
||
|
||
@length.setter
|
||
def length(self, length):
|
||
"""length must be in m"""
|
||
self._length = length
|
||
|
||
@property
|
||
def att_in(self):
|
||
return self._att_in
|
||
|
||
@att_in.setter
|
||
def att_in(self, att_in):
|
||
self._att_in = att_in
|
||
|
||
@property
|
||
def con_in(self):
|
||
return self._con_in
|
||
|
||
@con_in.setter
|
||
def con_in(self, con_in):
|
||
self._con_in = con_in
|
||
|
||
@property
|
||
def con_out(self):
|
||
return self._con_out
|
||
|
||
@property
|
||
def lumped_losses(self):
|
||
return self._lumped_losses
|
||
|
||
@con_out.setter
|
||
def con_out(self, con_out):
|
||
self._con_out = con_out
|
||
|
||
@property
|
||
def dispersion(self):
|
||
return self._dispersion
|
||
|
||
@property
|
||
def f_dispersion_ref(self):
|
||
return self._f_dispersion_ref
|
||
|
||
@property
|
||
def dispersion_slope(self):
|
||
return self._dispersion_slope
|
||
|
||
@property
|
||
def gamma(self):
|
||
return self._gamma
|
||
|
||
def effective_area_scaling(self, frequency):
|
||
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
|
||
w = self._core_radius / sqrt(log(V))
|
||
return asarray(pi * w ** 2)
|
||
|
||
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
|
||
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
|
||
effective_area_pump = self.effective_area_scaling(frequency_pump)
|
||
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
|
||
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
|
||
|
||
def gamma_scaling(self, frequency):
|
||
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
|
||
|
||
@property
|
||
def pmd_coef(self):
|
||
return self._pmd_coef
|
||
|
||
@property
|
||
def ref_wavelength(self):
|
||
return self._ref_wavelength
|
||
|
||
@property
|
||
def ref_frequency(self):
|
||
return self._ref_frequency
|
||
|
||
@property
|
||
def loss_coef(self):
|
||
return self._loss_coef
|
||
|
||
@property
|
||
def f_loss_ref(self):
|
||
return self._f_loss_ref
|
||
|
||
@property
|
||
def raman_coefficient(self):
|
||
return self._raman_coefficient
|
||
|
||
@property
|
||
def latency(self):
|
||
return self._latency
|
||
|
||
def asdict(self):
|
||
dictionary = super().asdict()
|
||
dictionary['loss_coef'] = self.loss_coef * 1e3
|
||
dictionary['length_units'] = 'm'
|
||
if len(self.lumped_losses) == 0:
|
||
dictionary.pop('lumped_losses')
|
||
if not self.raman_coefficient:
|
||
dictionary.pop('raman_coefficient')
|
||
else:
|
||
raman_frequency_offset = \
|
||
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
|
||
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
|
||
'frequency_offset': raman_frequency_offset.tolist(),
|
||
'reference_frequency': self._raman_reference_frequency}
|
||
return dictionary
|
||
|
||
|
||
class EdfaParams:
|
||
default_values = {
|
||
'f_min': None,
|
||
'f_max': None,
|
||
'multi_band': None,
|
||
'bands': None,
|
||
'type_variety': '',
|
||
'type_def': '',
|
||
'gain_flatmax': None,
|
||
'gain_min': None,
|
||
'p_max': None,
|
||
'nf_model': None,
|
||
'dual_stage_model': None,
|
||
'preamp_variety': None,
|
||
'booster_variety': None,
|
||
'nf_min': None,
|
||
'nf_max': None,
|
||
'nf_coef': None,
|
||
'nf0': None,
|
||
'nf_fit_coeff': None,
|
||
'nf_ripple': 0,
|
||
'dgt': None,
|
||
'gain_ripple': 0,
|
||
'tilt_ripple': 0,
|
||
'f_ripple_ref': None,
|
||
'out_voa_auto': False,
|
||
'allowed_for_design': False,
|
||
'raman': False,
|
||
'pmd': 0,
|
||
'pdl': 0,
|
||
'advance_configurations_from_json': None
|
||
}
|
||
|
||
def __init__(self, **params):
|
||
try:
|
||
self.type_variety = params['type_variety']
|
||
self.type_def = params['type_def']
|
||
|
||
# Bandwidth
|
||
self.f_min = params['f_min']
|
||
self.f_max = params['f_max']
|
||
self.bandwidth = self.f_max - self.f_min if self.f_max and self.f_min else None
|
||
self.f_cent = (self.f_max + self.f_min) / 2 if self.f_max and self.f_min else None
|
||
self.f_ripple_ref = params['f_ripple_ref']
|
||
self.bands = [{'f_min': params['f_min'],
|
||
'f_max': params['f_max']}]
|
||
|
||
# Gain
|
||
self.gain_flatmax = params['gain_flatmax']
|
||
self.gain_min = params['gain_min']
|
||
|
||
gain_ripple = params['gain_ripple']
|
||
if gain_ripple == 0:
|
||
self.gain_ripple = asarray([0, 0])
|
||
self.f_ripple_ref = asarray([self.f_min, self.f_max])
|
||
else:
|
||
self.gain_ripple = asarray(gain_ripple)
|
||
if self.f_ripple_ref is not None:
|
||
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
|
||
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
|
||
"with the EDFA frequency maximum and minimum.")
|
||
elif self.gain_ripple.size != self.f_ripple_ref.size:
|
||
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
|
||
"size.")
|
||
else:
|
||
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
|
||
|
||
tilt_ripple = params['tilt_ripple']
|
||
|
||
if tilt_ripple == 0:
|
||
self.tilt_ripple = full(self.gain_ripple.size, 0)
|
||
else:
|
||
self.tilt_ripple = asarray(tilt_ripple)
|
||
if self.tilt_ripple.size != self.gain_ripple.size:
|
||
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
|
||
|
||
# Power
|
||
self.p_max = params['p_max']
|
||
|
||
# Noise Figure
|
||
self.nf_model = params['nf_model']
|
||
self.nf_min = params['nf_min']
|
||
self.nf_max = params['nf_max']
|
||
self.nf_coef = params['nf_coef']
|
||
self.nf0 = params['nf0']
|
||
self.nf_fit_coeff = params['nf_fit_coeff']
|
||
|
||
nf_ripple = params['nf_ripple']
|
||
if nf_ripple == 0:
|
||
self.nf_ripple = full(self.gain_ripple.size, 0)
|
||
else:
|
||
self.nf_ripple = asarray(nf_ripple)
|
||
if self.nf_ripple.size != self.gain_ripple.size:
|
||
raise ParametersError("The noise figure ripple and the gain ripple must have the same size.")
|
||
|
||
# VOA
|
||
self.out_voa_auto = params['out_voa_auto']
|
||
|
||
# Dual Stage
|
||
self.dual_stage_model = params['dual_stage_model']
|
||
if self.dual_stage_model is not None:
|
||
# Preamp
|
||
self.preamp_variety = params['preamp_variety']
|
||
self.preamp_type_def = params['preamp_type_def']
|
||
self.preamp_nf_model = params['preamp_nf_model']
|
||
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
|
||
self.preamp_gain_min = params['preamp_gain_min']
|
||
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
|
||
|
||
# Booster
|
||
self.booster_variety = params['booster_variety']
|
||
self.booster_type_def = params['booster_type_def']
|
||
self.booster_nf_model = params['booster_nf_model']
|
||
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
|
||
self.booster_gain_min = params['booster_gain_min']
|
||
self.booster_gain_flatmax = params['booster_gain_flatmax']
|
||
|
||
# Others
|
||
self.pmd = params['pmd']
|
||
self.pdl = params['pdl']
|
||
self.raman = params['raman']
|
||
self.dgt = params['dgt']
|
||
self.advance_configurations_from_json = params['advance_configurations_from_json']
|
||
|
||
# Design
|
||
self.allowed_for_design = params['allowed_for_design']
|
||
|
||
except KeyError as e:
|
||
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
|
||
|
||
def update_params(self, kwargs):
|
||
for k, v in kwargs.items():
|
||
setattr(self, k, v)
|
||
|
||
|
||
class EdfaOperational:
|
||
default_values = {
|
||
'gain_target': None,
|
||
'delta_p': None,
|
||
'out_voa': None,
|
||
'tilt_target': 0
|
||
}
|
||
|
||
def __init__(self, **operational):
|
||
self.update_attr(operational)
|
||
|
||
def update_attr(self, kwargs):
|
||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||
for k, v in self.default_values.items():
|
||
setattr(self, k, clean_kwargs.get(k, v))
|
||
|
||
def __repr__(self):
|
||
return (f'{type(self).__name__}('
|
||
f'gain_target={self.gain_target!r}, '
|
||
f'tilt_target={self.tilt_target!r})')
|
||
|
||
|
||
class MultiBandParams:
|
||
default_values = {
|
||
'bands': [],
|
||
'type_variety': '',
|
||
'type_def': None,
|
||
'allowed_for_design': False
|
||
}
|
||
|
||
def __init__(self, **params):
|
||
try:
|
||
self.update_attr(params)
|
||
except KeyError as e:
|
||
raise ParametersError(f'Multiband configurations json must include {e}. Configuration: {params}')
|
||
|
||
def update_attr(self, kwargs):
|
||
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
||
for k, v in self.default_values.items():
|
||
# use deepcopy to avoid sharing same object amongst all instance when v is a list or a dict!
|
||
if isinstance(v, (list, dict)):
|
||
setattr(self, k, clean_kwargs.get(k, deepcopy(v)))
|
||
else:
|
||
setattr(self, k, clean_kwargs.get(k, v))
|
||
|
||
|
||
@dataclass
|
||
class FrequencyBand:
|
||
"""Frequency band
|
||
"""
|
||
f_min: float
|
||
f_max: float
|
||
|
||
|
||
DEFAULT_BANDS_DEFINITION = {
|
||
"LBAND": FrequencyBand(f_min=187e12, f_max=189e12),
|
||
"CBAND": FrequencyBand(f_min=191.3e12, f_max=196.0e12)
|
||
}
|
||
# use this definition to index amplifiers'element of a multiband amplifier.
|
||
# this is not the design band
|
||
|
||
|
||
def find_band_name(band: FrequencyBand) -> str:
|
||
"""return the default band name (CBAND, LBAND, ...) that corresponds to the band frequency range
|
||
Use the band center frequency: if center frequency is inside the band then returns CBAND.
|
||
This is to flexibly encompass all kind of bands definitions.
|
||
returns the first matching band name.
|
||
"""
|
||
for band_name, frequency_range in DEFAULT_BANDS_DEFINITION.items():
|
||
center_frequency = (band.f_min + band.f_max) / 2
|
||
if center_frequency >= frequency_range.f_min and center_frequency <= frequency_range.f_max:
|
||
return band_name
|
||
return 'unknown_band'
|