Files
oopt-gnpy/gnpy/core/utils.py
EstherLerouzic 32adc0fc53 feat: enables reading per degree impairment from xls input
- read per degre roadm-path impairment from roadm sheet
add additional optional columns: type_variety and 'from degrees'
and 'from degree to degree impairment id'
'from degrees' can contain a list of degrees separated with ' | ', then the
'from degree to degree impairment id' must contain a list of ids of the same
length.
Impairment ids are expected to be in the ROADM equipment spec and
from degree must be the previous node (no verification of user input).

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I7d326bb3d4f366835249089e9537747c7d3ec2fd
2024-11-25 12:09:09 +01:00

551 lines
16 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.utils
===============
This module contains utility functions that are used with gnpy.
"""
from csv import writer
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean, array
from scipy import constants
from copy import deepcopy
from typing import List, Union
from gnpy.core.exceptions import ConfigurationError
def write_csv(obj, filename):
"""
Convert dictionary items to a CSV file the dictionary format:
::
{'result category 1':
[
# 1st line of results
{'header 1' : value_xxx,
'header 2' : value_yyy},
# 2nd line of results: same headers, different results
{'header 1' : value_www,
'header 2' : value_zzz}
],
'result_category 2':
[
{},{}
]
}
The generated csv file will be:
::
result_category 1
header 1 header 2
value_xxx value_yyy
value_www value_zzz
result_category 2
...
"""
with open(filename, 'w', encoding='utf-8') as f:
w = writer(f)
for data_key, data_list in obj.items():
# main header
w.writerow([data_key])
# sub headers:
headers = [_ for _ in data_list[0].keys()]
w.writerow(headers)
for data_dict in data_list:
w.writerow([_ for _ in data_dict.values()])
def arrange_frequencies(length, start, stop):
"""Create an array of frequencies
:param length: number of elements
:param start: Start frequency in THz
:param stop: Stop frequency in THz
:type length: integer
:type start: float
:type stop: float
:return: an array of frequencies determined by the spacing parameter
:rtype: numpy.ndarray
"""
return linspace(start, stop, length)
def lin2db(value):
"""Convert linear unit to logarithmic (dB)
>>> lin2db(0.001)
-30.0
>>> round(lin2db(1.0), 2)
0.0
>>> round(lin2db(1.26), 2)
1.0
>>> round(lin2db(10.0), 2)
10.0
>>> round(lin2db(100.0), 2)
20.0
"""
return 10 * log10(value)
def db2lin(value):
"""Convert logarithimic units to linear
>>> round(db2lin(10.0), 2)
10.0
>>> round(db2lin(20.0), 2)
100.0
>>> round(db2lin(1.0), 2)
1.26
>>> round(db2lin(0.0), 2)
1.0
>>> round(db2lin(-10.0), 2)
0.1
"""
return 10**(value / 10)
def watt2dbm(value):
"""Convert Watt units to dBm
>>> round(watt2dbm(0.001), 1)
0.0
>>> round(watt2dbm(0.02), 1)
13.0
"""
return lin2db(value * 1e3)
def dbm2watt(value):
"""Convert dBm units to Watt
>>> round(dbm2watt(0), 4)
0.001
>>> round(dbm2watt(-3), 4)
0.0005
>>> round(dbm2watt(13), 4)
0.02
"""
return db2lin(value) * 1e-3
def psd2powerdbm(psd_mwperghz, baudrate_baud):
"""computes power in dBm based on baudrate in bauds and psd in mW/GHz
>>> round(psd2powerdbm(0.031176, 64e9),3)
3.0
>>> round(psd2powerdbm(0.062352, 32e9),3)
3.0
>>> round(psd2powerdbm(0.015625, 64e9),3)
0.0
"""
return lin2db(baudrate_baud * psd_mwperghz * 1e-9)
def power_dbm_to_psd_mw_ghz(power_dbm, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in dBm
>>> power_dbm_to_psd_mw_ghz(0, 64e9)
0.015625
>>> round(power_dbm_to_psd_mw_ghz(3, 64e9), 6)
0.031176
>>> round(power_dbm_to_psd_mw_ghz(3, 32e9), 6)
0.062352
"""
return db2lin(power_dbm) / (baudrate_baud * 1e-9)
def psd_mw_per_ghz(power_watt, baudrate_baud):
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in W
>>> psd_mw_per_ghz(2e-3, 32e9)
0.0625
>>> psd_mw_per_ghz(1e-3, 64e9)
0.015625
>>> psd_mw_per_ghz(0.5e-3, 32e9)
0.015625
"""
return power_watt * 1e3 / (baudrate_baud * 1e-9)
def round2float(number, step):
"""Round a floating point number so that its "resolution" is not bigger than 'step'
The finest step is fixed at 0.01; smaller values are silently changed to 0.01.
>>> round2float(123.456, 1000)
0.0
>>> round2float(123.456, 100)
100.0
>>> round2float(123.456, 10)
120.0
>>> round2float(123.456, 1)
123.0
>>> round2float(123.456, 0.1)
123.5
>>> round2float(123.456, 0.01)
123.46
>>> round2float(123.456, 0.001)
123.46
>>> round2float(123.249, 0.5)
123.0
>>> round2float(123.250, 0.5)
123.0
>>> round2float(123.251, 0.5)
123.5
>>> round2float(123.300, 0.2)
123.2
>>> round2float(123.301, 0.2)
123.4
"""
step = round(step, 1)
if step >= 0.01:
number = round(number / step, 0)
number = round(number * step, 1)
else:
number = round(number, 2)
return number
wavelength2freq = constants.lambda2nu
freq2wavelength = constants.nu2lambda
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
snr_added = snr_added - lin2db(bw / bw_added)
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
return snr
def per_label_average(values, labels):
"""computes the average per defined spectrum band, using labels
>>> labels = ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'D', 'D', 'D', 'D']
>>> values = [28.51, 28.23, 28.15, 28.17, 28.36, 28.53, 28.64, 28.68, 28.7, 28.71, 28.72, 28.73, 28.74, 28.91, 27.96, 27.85, 27.87, 28.02]
>>> per_label_average(values, labels)
{'A': 28.28, 'B': 28.68, 'C': 28.91, 'D': 27.92}
"""
label_set = sorted(set(labels))
summary = {}
for label in label_set:
vals = [val for val, lab in zip(values, labels) if lab == label]
summary[label] = round(mean(vals), 2)
return summary
def pretty_summary_print(summary):
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
if len(summary) == 1:
return f'{list(summary.values())[0]:.2f}'
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
return text
def deltawl2deltaf(delta_wl, wavelength):
"""deltawl2deltaf(delta_wl, wavelength):
delta_wl is BW in wavelength units
wavelength is the center wl
units for delta_wl and wavelength must be same
:param delta_wl: delta wavelength BW in same units as wavelength
:param wavelength: wavelength BW is relevant for
:type delta_wl: float or numpy.ndarray
:type wavelength: float
:return: The BW in frequency units
:rtype: float or ndarray
"""
f = wavelength2freq(wavelength)
return delta_wl * f / wavelength
def deltaf2deltawl(delta_f, frequency):
"""convert delta frequency to delta wavelength
Units for delta_wl and wavelength must be same.
:param delta_f: delta frequency in same units as frequency
:param frequency: frequency BW is relevant for
:type delta_f: float or numpy.ndarray
:type frequency: float
:return: The BW in wavelength units
:rtype: float or ndarray
"""
wl = freq2wavelength(frequency)
return delta_f * wl / frequency
def rrc(ffs, baud_rate, alpha):
"""compute the root-raised cosine filter function
:param ffs: A numpy array of frequencies
:param baud_rate: The Baud Rate of the System
:param alpha: The roll-off factor of the filter
:type ffs: numpy.ndarray
:type baud_rate: float
:type alpha: float
:return: hf a numpy array of the filter shape
:rtype: numpy.ndarray
"""
Ts = 1 / baud_rate
l_lim = (1 - alpha) / (2 * Ts)
r_lim = (1 + alpha) / (2 * Ts)
hf = zeros(shape(ffs))
slope_inds = where(
logical_and(abs(ffs) > l_lim, abs(ffs) < r_lim))
hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) *
(abs(ffs[slope_inds]) - l_lim)))
p_inds = where(logical_and(abs(ffs) > 0, abs(ffs) < l_lim))
hf[p_inds] = 1
return sqrt(hf)
def merge_amplifier_restrictions(dict1, dict2):
"""Update contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
>>> merge_amplifier_restrictions(d1, d2)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}}
>>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}}
>>> merge_amplifier_restrictions(d1, d3)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
"""
copy_dict1 = dict1.copy()
for key in dict2:
if key in dict1:
if isinstance(dict1[key], dict):
copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key])
else:
copy_dict1[key] = dict2[key]
return copy_dict1
def silent_remove(this_list, elem):
"""Remove matching elements from a list without raising ValueError
>>> li = [0, 1]
>>> li = silent_remove(li, 1)
>>> li
[0]
>>> li = silent_remove(li, 1)
>>> li
[0]
"""
try:
this_list.remove(elem)
except ValueError:
pass
return this_list
def automatic_nch(f_min, f_max, spacing):
"""How many channels are available in the spectrum
:param f_min Lowest frequenecy [Hz]
:param f_max Highest frequency [Hz]
:param spacing Channel width [Hz]
:return Number of uniform channels
>>> automatic_nch(191.325e12, 196.125e12, 50e9)
96
>>> automatic_nch(193.475e12, 193.525e12, 50e9)
1
"""
return int((f_max - f_min) // spacing)
def automatic_fmax(f_min, spacing, nch):
"""Find the high-frequenecy boundary of a spectrum
:param f_min Start of the spectrum (lowest frequency edge) [Hz]
:param spacing Grid/channel spacing [Hz]
:param nch Number of channels
:return End of the spectrum (highest frequency) [Hz]
>>> automatic_fmax(191.325e12, 50e9, 96)
196125000000000.0
"""
return f_min + spacing * nch
def convert_length(value, units):
"""Convert length into basic SI units
>>> convert_length(1, 'km')
1000.0
>>> convert_length(2.0, 'km')
2000.0
>>> convert_length(123, 'm')
123.0
>>> convert_length(123.0, 'm')
123.0
>>> convert_length(42.1, 'km')
42100.0
>>> convert_length(666, 'yards')
Traceback (most recent call last):
...
gnpy.core.exceptions.ConfigurationError: Cannot convert length in "yards" into meters
"""
if units == 'm':
return value * 1e0
elif units == 'km':
return value * 1e3
else:
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
def replace_none(dictionary):
""" Replaces None with inf values in a frequency slots dict
>>> replace_none({'N': 3, 'M': None})
{'N': 3, 'M': inf}
"""
for key, val in dictionary.items():
if val is None:
dictionary[key] = float('inf')
if val == float('inf'):
dictionary[key] = None
return dictionary
def order_slots(slots):
""" Order frequency slots from larger slots to smaller ones up to None
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
>>> order_slots(l)
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
"""
slots_list = deepcopy(slots)
slots_list = [replace_none(e) for e in slots_list]
for i, e in enumerate(slots_list):
e['i'] = i
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
slots_list = [replace_none(e) for e in slots_list]
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
def restore_order(elements, order):
""" Use order to re-order the element of the list, and ignore None values
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
[3, 2, 7]
"""
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]
def calculate_absolute_min_or_zero(x: array) -> array:
"""Calculates the element-wise absolute minimum between the x and zero.
Parameters:
x (array): The first input array.
Returns:
array: The element-wise absolute minimum between x and zero.
Example:
>>> x = array([-1, 2, -3])
>>> calculate_absolute_min_or_zero(x)
array([1., 0., 3.])
"""
return (abs(x) - x) / 2
def nice_column_str(data: List[List[str]], max_length: int = 30, padding: int = 1) -> str:
"""data is a list of rows, creates strings with nice alignment per colum and padding with spaces
letf justified
>>> table_data = [['aaa', 'b', 'c'], ['aaaaaaaa', 'bbb', 'c'], ['a', 'bbbbbbbbbb', 'c']]
>>> print(nice_column_str(table_data))
aaa b c
aaaaaaaa bbb c
a bbbbbbbbbb c
"""
# transpose data to determine size of columns
transposed_data = list(map(list, zip(*data)))
column_width = [max(len(word) for word in column) + padding for column in transposed_data]
nice_str = []
for row in data:
column = ''.join(word[0:max_length].ljust(min(width, max_length)) for width, word in zip(column_width, row))
nice_str.append(f'{column}')
return '\n'.join(nice_str)
def find_common_range(amp_bands: List[List[dict]], default_band_f_min: float, default_band_f_max: float) \
-> List[dict]:
"""Find the common frequency range of bands
If there are no amplifiers in the path, then use default band
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
[{'f_min': 186e12, 'f_max': 193e12}]]
>>> find_common_range(amp_bands, 190e12, 195e12)
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}, {'f_min': 192000000000000.0, 'f_max': 193000000000000.0}]
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
[{'f_min': 186e12, 'f_max': 192e12}]]
>>> find_common_range(amp_bands, 190e12, 195e12)
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}]
"""
_amp_bands = [sorted(amp, key=lambda x: x['f_min']) for amp in amp_bands]
_temp = []
# remove None bands
for amp in _amp_bands:
is_band = True
for band in amp:
if not (is_band and band['f_min'] and band['f_max']):
is_band = False
if is_band:
_temp.append(amp)
# remove duplicate
unique_amp_bands = []
for amp in _temp:
if amp not in unique_amp_bands:
unique_amp_bands.append(amp)
if unique_amp_bands:
common_range = unique_amp_bands[0]
else:
if default_band_f_min is None or default_band_f_max is None:
return []
common_range = [{'f_min': default_band_f_min, 'f_max': default_band_f_max}]
for bands in unique_amp_bands:
common_range = [{'f_min': max(first['f_min'], second['f_min']), 'f_max': min(first['f_max'], second['f_max'])}
for first in common_range for second in bands
if max(first['f_min'], second['f_min']) < min(first['f_max'], second['f_max'])]
return sorted(common_range, key=lambda x: x['f_min'])
def transform_data(data: str) -> Union[List[int], None]:
"""Transforms a float into an list of one integer or a string separated by "|" into a list of integers.
Args:
data (float or str): The data to transform.
Returns:
list of int: The transformed data as a list of integers.
Examples:
>>> transform_data(5.0)
[5]
>>> transform_data('1 | 2 | 3')
[1, 2, 3]
"""
if isinstance(data, float):
return [int(data)]
if isinstance(data, str):
return [int(x) for x in data.split(' | ')]
return None