mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 17:47:50 +00:00
743 lines
34 KiB
Python
743 lines
34 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
gnpy.core.science_utils
|
|
=======================
|
|
|
|
Solver definitions to calculate the Raman effect and the nonlinear interference noise
|
|
|
|
The solvers take as input instances of the spectral information, the fiber and the simulation parameters
|
|
"""
|
|
|
|
from numpy import interp, pi, zeros, shape, where, cos, reshape, array, append, ones, argsort, nan, exp, arange, sqrt, \
|
|
empty, vstack, trapz, arcsinh, clip, abs, sum
|
|
from operator import attrgetter
|
|
from logging import getLogger
|
|
import scipy.constants as ph
|
|
from scipy.integrate import solve_bvp
|
|
from scipy.integrate import cumtrapz
|
|
from scipy.interpolate import interp1d
|
|
from scipy.optimize import OptimizeResult
|
|
from math import isclose
|
|
|
|
from gnpy.core.utils import db2lin, lin2db
|
|
from gnpy.core.exceptions import EquipmentConfigError
|
|
|
|
logger = getLogger(__name__)
|
|
|
|
|
|
def propagate_raman_fiber(fiber, *carriers):
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
raman_params = sim_params.raman_params
|
|
nli_params = sim_params.nli_params
|
|
# apply input attenuation to carriers
|
|
attenuation_in = db2lin(fiber.params.con_in + fiber.params.att_in)
|
|
chan = []
|
|
for carrier in carriers:
|
|
pwr = carrier.power
|
|
pwr = pwr._replace(signal=pwr.signal / attenuation_in,
|
|
nli=pwr.nli / attenuation_in,
|
|
ase=pwr.ase / attenuation_in)
|
|
carrier = carrier._replace(power=pwr)
|
|
chan.append(carrier)
|
|
carriers = tuple(f for f in chan)
|
|
|
|
# evaluate fiber attenuation involving also SRS if required by sim_params
|
|
raman_solver = fiber.raman_solver
|
|
raman_solver.carriers = carriers
|
|
raman_solver.raman_pumps = fiber.raman_pumps
|
|
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering
|
|
|
|
fiber_attenuation = (stimulated_raman_scattering.rho[:, -1])**-2
|
|
if not raman_params.flag_raman:
|
|
fiber_attenuation = tuple(fiber.params.lin_attenuation for _ in carriers)
|
|
|
|
# evaluate Raman ASE noise if required by sim_params and if raman pumps are present
|
|
if raman_params.flag_raman and fiber.raman_pumps:
|
|
raman_ase = raman_solver.spontaneous_raman_scattering.power[:, -1]
|
|
else:
|
|
raman_ase = tuple(0 for _ in carriers)
|
|
|
|
# evaluate nli and propagate in fiber
|
|
attenuation_out = db2lin(fiber.params.con_out)
|
|
nli_solver = fiber.nli_solver
|
|
nli_solver.stimulated_raman_scattering = stimulated_raman_scattering
|
|
|
|
nli_frequencies = []
|
|
computed_nli = []
|
|
for carrier in (c for c in carriers if c.channel_number in sim_params.nli_params.computed_channels):
|
|
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber)
|
|
f_cut_resolution, f_pump_resolution, _, _ = resolution_param
|
|
nli_params.f_cut_resolution = f_cut_resolution
|
|
nli_params.f_pump_resolution = f_pump_resolution
|
|
nli_frequencies.append(carrier.frequency)
|
|
computed_nli.append(nli_solver.compute_nli(carrier, *carriers))
|
|
|
|
new_carriers = []
|
|
for carrier, attenuation, rmn_ase in zip(carriers, fiber_attenuation, raman_ase):
|
|
carrier_nli = interp(carrier.frequency, nli_frequencies, computed_nli)
|
|
pwr = carrier.power
|
|
pwr = pwr._replace(signal=pwr.signal / attenuation / attenuation_out,
|
|
nli=(pwr.nli + carrier_nli) / attenuation / attenuation_out,
|
|
ase=((pwr.ase / attenuation) + rmn_ase) / attenuation_out)
|
|
new_carriers.append(carrier._replace(power=pwr))
|
|
return new_carriers
|
|
|
|
|
|
def frequency_resolution(carrier, carriers, sim_params, fiber):
|
|
def _get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol):
|
|
res_phi = _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol)
|
|
res_k = _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol)
|
|
res_dict = {'res_phi': res_phi, 'res_k': res_k}
|
|
method = min(res_dict, key=res_dict.get)
|
|
return res_dict[method], method, res_dict
|
|
|
|
def _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha0, beta2, k_tol):
|
|
return k_tol * abs(alpha0) / abs(beta2) / (1 + delta_count) / (4 * pi ** 2 * grid_size)
|
|
|
|
def _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol):
|
|
return phi_tol / abs(beta2) / (1 + delta_count) / delta_z / (4 * pi ** 2 * grid_size)
|
|
|
|
grid_size = sim_params.nli_params.wdm_grid_size
|
|
delta_z = sim_params.raman_params.space_resolution
|
|
alpha0 = fiber.alpha0()
|
|
beta2 = fiber.params.beta2
|
|
k_tol = sim_params.nli_params.dispersion_tolerance
|
|
phi_tol = sim_params.nli_params.phase_shift_tolerance
|
|
f_pump_resolution, method_f_pump, res_dict_pump = \
|
|
_get_freq_res_k_phi(0, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
|
|
f_cut_resolution = {}
|
|
method_f_cut = {}
|
|
res_dict_cut = {}
|
|
for cut_carrier in carriers:
|
|
delta_number = cut_carrier.channel_number - carrier.channel_number
|
|
delta_count = abs(delta_number)
|
|
f_res, method, res_dict = \
|
|
_get_freq_res_k_phi(delta_count, grid_size, alpha0, delta_z, beta2, k_tol, phi_tol)
|
|
f_cut_resolution[f'delta_{delta_number}'] = f_res
|
|
method_f_cut[delta_number] = method
|
|
res_dict_cut[delta_number] = res_dict
|
|
return [f_cut_resolution, f_pump_resolution, (method_f_cut, method_f_pump), (res_dict_cut, res_dict_pump)]
|
|
|
|
|
|
def raised_cosine_comb(f, *carriers):
|
|
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
|
|
channels at the input frequencies defined in array f
|
|
:param f: numpy array of frequencies in Hz
|
|
:param carriers: namedtuple describing the WDM comb
|
|
:return: PSD of the WDM comb evaluated over f
|
|
"""
|
|
psd = zeros(shape(f))
|
|
for carrier in carriers:
|
|
f_nch = carrier.frequency
|
|
g_ch = carrier.power.signal / carrier.baud_rate
|
|
ts = 1 / carrier.baud_rate
|
|
pass_band = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
|
|
stop_band = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
|
|
ff = abs(f - f_nch)
|
|
tf = ff - pass_band
|
|
if carrier.roll_off == 0:
|
|
psd = where(tf <= 0, g_ch, 0.) + psd
|
|
else:
|
|
psd = g_ch * (where(tf <= 0, 1., 0.) + 1 / 2 * (1 + cos(pi * ts / carrier.roll_off * tf)) *
|
|
where(tf > 0, 1., 0.) * where(abs(ff) <= stop_band, 1., 0.)) + psd
|
|
return psd
|
|
|
|
|
|
class Simulation:
|
|
_shared_dict = {}
|
|
|
|
def __init__(self):
|
|
if type(self) == Simulation:
|
|
raise NotImplementedError('Simulation cannot be instatiated')
|
|
|
|
@classmethod
|
|
def set_params(cls, sim_params):
|
|
cls._shared_dict['sim_params'] = sim_params
|
|
|
|
@classmethod
|
|
def get_simulation(cls):
|
|
self = cls.__new__(cls)
|
|
return self
|
|
|
|
@property
|
|
def sim_params(self):
|
|
return self._shared_dict['sim_params']
|
|
|
|
|
|
class SpontaneousRamanScattering:
|
|
def __init__(self, frequency, z, power):
|
|
self.frequency = frequency
|
|
self.z = z
|
|
self.power = power
|
|
|
|
|
|
class StimulatedRamanScattering:
|
|
def __init__(self, frequency, z, rho, power):
|
|
self.frequency = frequency
|
|
self.z = z
|
|
self.rho = rho
|
|
self.power = power
|
|
|
|
|
|
class RamanSolver:
|
|
def __init__(self, fiber=None):
|
|
""" Initialize the Raman solver object.
|
|
:param fiber: instance of elements.py/Fiber.
|
|
:param carriers: tuple of carrier objects
|
|
:param raman_pumps: tuple containing pumps characteristics
|
|
"""
|
|
self._fiber = fiber
|
|
self._carriers = None
|
|
self._raman_pumps = None
|
|
self._stimulated_raman_scattering = None
|
|
self._spontaneous_raman_scattering = None
|
|
|
|
@property
|
|
def fiber(self):
|
|
return self._fiber
|
|
|
|
@property
|
|
def carriers(self):
|
|
return self._carriers
|
|
|
|
@carriers.setter
|
|
def carriers(self, carriers):
|
|
self._carriers = carriers
|
|
self._spontaneous_raman_scattering = None
|
|
self._stimulated_raman_scattering = None
|
|
|
|
@property
|
|
def raman_pumps(self):
|
|
return self._raman_pumps
|
|
|
|
@raman_pumps.setter
|
|
def raman_pumps(self, raman_pumps):
|
|
self._raman_pumps = raman_pumps
|
|
self._stimulated_raman_scattering = None
|
|
|
|
@property
|
|
def stimulated_raman_scattering(self):
|
|
if self._stimulated_raman_scattering is None:
|
|
self.calculate_stimulated_raman_scattering(self.carriers, self.raman_pumps)
|
|
return self._stimulated_raman_scattering
|
|
|
|
@property
|
|
def spontaneous_raman_scattering(self):
|
|
if self._spontaneous_raman_scattering is None:
|
|
self.calculate_spontaneous_raman_scattering(self.carriers, self.raman_pumps)
|
|
return self._spontaneous_raman_scattering
|
|
|
|
def calculate_spontaneous_raman_scattering(self, carriers, raman_pumps):
|
|
raman_efficiency = self.fiber.params.raman_efficiency
|
|
temperature = self.fiber.operational['temperature']
|
|
|
|
logger.debug('Start computing fiber Spontaneous Raman Scattering')
|
|
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
|
|
|
|
alphap_fiber = self.fiber.alpha(freq_array)
|
|
|
|
freq_diff = abs(freq_array - reshape(freq_array, (len(freq_array), 1)))
|
|
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
|
cr = interp_cr(freq_diff)
|
|
|
|
# z propagation axis
|
|
z_array = self.stimulated_raman_scattering.z
|
|
ase_bc = zeros(freq_array.shape)
|
|
|
|
# calculate ase power
|
|
int_spontaneous_raman = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
|
|
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
|
|
bn_array, temperature)
|
|
|
|
spontaneous_raman_scattering = SpontaneousRamanScattering(freq_array, z_array, int_spontaneous_raman.x)
|
|
logger.debug("Spontaneous Raman Scattering evaluated successfully")
|
|
self._spontaneous_raman_scattering = spontaneous_raman_scattering
|
|
|
|
@staticmethod
|
|
def _compute_power_spectrum(carriers, raman_pumps=None):
|
|
"""
|
|
Rearrangement of spectral and Raman pump information to make them compatible with Raman solver
|
|
:param carriers: a tuple of namedtuples describing the transmitted channels
|
|
:param raman_pumps: a namedtuple describing the Raman pumps
|
|
:return:
|
|
"""
|
|
|
|
# Signal power spectrum
|
|
pow_array = array([])
|
|
f_array = array([])
|
|
noise_bandwidth_array = array([])
|
|
for carrier in sorted(carriers, key=attrgetter('frequency')):
|
|
f_array = append(f_array, carrier.frequency)
|
|
pow_array = append(pow_array, carrier.power.signal)
|
|
ref_bw = carrier.baud_rate
|
|
noise_bandwidth_array = append(noise_bandwidth_array, ref_bw)
|
|
|
|
propagation_direction = ones(len(f_array))
|
|
|
|
# Raman pump power spectrum
|
|
if raman_pumps:
|
|
for pump in raman_pumps:
|
|
pow_array = append(pow_array, pump.power)
|
|
f_array = append(f_array, pump.frequency)
|
|
direction = +1 if pump.propagation_direction.lower() == 'coprop' else -1
|
|
propagation_direction = append(propagation_direction, direction)
|
|
noise_bandwidth_array = append(noise_bandwidth_array, ref_bw)
|
|
|
|
# Final sorting
|
|
ind = argsort(f_array)
|
|
f_array = f_array[ind]
|
|
pow_array = pow_array[ind]
|
|
propagation_direction = propagation_direction[ind]
|
|
|
|
return pow_array, f_array, propagation_direction, noise_bandwidth_array
|
|
|
|
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array,
|
|
cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
|
|
spontaneous_raman_scattering = OptimizeResult()
|
|
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
|
|
dx = sim_params.raman_params.space_resolution
|
|
h = ph.value('Planck constant')
|
|
kb = ph.value('Boltzmann constant')
|
|
|
|
power_ase = nan * ones(raman_matrix.shape)
|
|
int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)
|
|
|
|
for f_ind, f_ase in enumerate(freq_array):
|
|
cr_raman = cr_raman_matrix[f_ind, :]
|
|
vibrational_loss = f_ase / freq_array[:f_ind]
|
|
eta = 1 / (exp((h * freq_diff[f_ind, f_ind + 1:]) / (kb * temperature)) - 1)
|
|
|
|
int_fiber_loss = -alphap_fiber[f_ind] * z_array
|
|
int_raman_loss = sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(),
|
|
axis=0)
|
|
int_raman_gain = sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
|
|
|
|
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
|
|
|
|
new_ase = sum((cr_raman[f_ind + 1:] * (1 + eta) * raman_matrix[f_ind + 1:, :].transpose()).transpose()
|
|
* h * f_ase * bn_array[f_ind], axis=0)
|
|
|
|
bc_evolution = ase_bc[f_ind] * exp(int_gain_loss)
|
|
ase_evolution = exp(int_gain_loss) * cumtrapz(new_ase * exp(-int_gain_loss), z_array, dx=dx, initial=0)
|
|
|
|
power_ase[f_ind, :] = bc_evolution + ase_evolution
|
|
|
|
spontaneous_raman_scattering.x = 2 * power_ase
|
|
return spontaneous_raman_scattering
|
|
|
|
def calculate_stimulated_raman_scattering(self, carriers, raman_pumps):
|
|
""" Returns stimulated Raman scattering solution including
|
|
fiber gain/loss profile.
|
|
:return: None
|
|
"""
|
|
# fiber parameters
|
|
fiber_length = self.fiber.params.length
|
|
raman_efficiency = self.fiber.params.raman_efficiency
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
|
|
if not sim_params.raman_params.flag_raman:
|
|
raman_efficiency['cr'] = zeros(len(raman_efficiency['cr']))
|
|
# raman solver parameters
|
|
z_resolution = sim_params.raman_params.space_resolution
|
|
tolerance = sim_params.raman_params.tolerance
|
|
|
|
logger.debug('Start computing fiber Stimulated Raman Scattering')
|
|
|
|
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
|
|
|
|
alphap_fiber = self.fiber.alpha(freq_array)
|
|
|
|
freq_diff = abs(freq_array - reshape(freq_array, (len(freq_array), 1)))
|
|
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
|
|
cr = interp_cr(freq_diff)
|
|
|
|
# z propagation axis
|
|
z = arange(0, fiber_length + 1, z_resolution)
|
|
|
|
def ode_function(z, p):
|
|
return self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
|
|
|
|
def boundary_residual(ya, yb):
|
|
return self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
|
|
|
|
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
|
|
|
|
# ODE SOLVER
|
|
bvp_solution = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance)
|
|
|
|
rho = (bvp_solution.y.transpose() / power_spectrum).transpose()
|
|
rho = sqrt(rho) # From power attenuation to field attenuation
|
|
stimulated_raman_scattering = StimulatedRamanScattering(freq_array, bvp_solution.x, rho, bvp_solution.y)
|
|
|
|
self._stimulated_raman_scattering = stimulated_raman_scattering
|
|
|
|
def _residuals_stimulated_raman(self, ya, yb, power_spectrum, prop_direct):
|
|
|
|
computed_boundary_value = zeros(ya.size)
|
|
|
|
for index, direction in enumerate(prop_direct):
|
|
if direction == +1:
|
|
computed_boundary_value[index] = ya[index]
|
|
else:
|
|
computed_boundary_value[index] = yb[index]
|
|
|
|
return power_spectrum - computed_boundary_value
|
|
|
|
def _initial_guess_stimulated_raman(self, z, power_spectrum, alphap_fiber, prop_direct):
|
|
""" Computes the initial guess knowing the boundary conditions
|
|
:param z: patial axis [m]. numpy array
|
|
:param power_spectrum: power in each frequency slice [W].
|
|
Frequency axis is defined by freq_array. numpy array
|
|
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m].
|
|
Frequency defined by freq_array. numpy array
|
|
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
|
|
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array
|
|
:return: power_guess: guess on the initial conditions [W].
|
|
The first ndarray index identifies the frequency slice,
|
|
the second ndarray index identifies the step in z. ndarray
|
|
"""
|
|
|
|
power_guess = empty((power_spectrum.size, z.size))
|
|
for f_index, power_slice in enumerate(power_spectrum):
|
|
if prop_direct[f_index] == +1:
|
|
power_guess[f_index, :] = exp(-alphap_fiber[f_index] * z) * power_slice
|
|
else:
|
|
power_guess[f_index, :] = exp(-alphap_fiber[f_index] * z[::-1]) * power_slice
|
|
|
|
return power_guess
|
|
|
|
def _ode_stimulated_raman(self, z, power_spectrum, alphap_fiber, freq_array, cr_raman_matrix, prop_direct):
|
|
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs)
|
|
describing the Raman effect.
|
|
:param z: spatial axis (unused).
|
|
:param power_spectrum: power in each frequency slice [W].
|
|
Frequency axis is defined by freq_array. numpy array. Size n
|
|
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m].
|
|
Frequency defined by freq_array. numpy array. Size n
|
|
:param freq_array: reference frequency axis [Hz]. numpy array. Size n
|
|
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m].
|
|
Frequency defined by freq_array. numpy ndarray. Size nxn
|
|
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
|
|
+1 for forward propagation and -1 for backward propagation.
|
|
Frequency defined by freq_array. numpy array. Size n
|
|
:return: dP/dz: the power variation in dz [W/m]. numpy array. Size n
|
|
"""
|
|
|
|
dpdz = nan * ones(power_spectrum.shape)
|
|
for f_ind, power in enumerate(power_spectrum):
|
|
cr_raman = cr_raman_matrix[f_ind, :]
|
|
vibrational_loss = freq_array[f_ind] / freq_array[:f_ind]
|
|
|
|
for z_ind, power_sample in enumerate(power):
|
|
raman_gain = sum(cr_raman[f_ind + 1:] * power_spectrum[f_ind + 1:, z_ind])
|
|
raman_loss = sum(vibrational_loss * cr_raman[:f_ind] * power_spectrum[:f_ind, z_ind])
|
|
|
|
dpdz_element = prop_direct[f_ind] * (-alphap_fiber[f_ind] + raman_gain - raman_loss) * power_sample
|
|
dpdz[f_ind][z_ind] = dpdz_element
|
|
|
|
return vstack(dpdz)
|
|
|
|
|
|
class NliSolver:
|
|
""" This class implements the NLI models.
|
|
Model and method can be specified in `sim_params.nli_params.method`.
|
|
List of implemented methods:
|
|
'gn_model_analytic': eq. 120 from arXiv:1209.0394
|
|
'ggn_spectrally_separated_xpm_spm': XPM plus SPM
|
|
"""
|
|
|
|
def __init__(self, fiber=None):
|
|
""" Initialize the Nli solver object.
|
|
:param fiber: instance of elements.py/Fiber.
|
|
"""
|
|
self._fiber = fiber
|
|
self._stimulated_raman_scattering = None
|
|
|
|
@property
|
|
def fiber(self):
|
|
return self._fiber
|
|
|
|
@property
|
|
def stimulated_raman_scattering(self):
|
|
return self._stimulated_raman_scattering
|
|
|
|
@stimulated_raman_scattering.setter
|
|
def stimulated_raman_scattering(self, stimulated_raman_scattering):
|
|
self._stimulated_raman_scattering = stimulated_raman_scattering
|
|
|
|
def compute_nli(self, carrier, *carriers):
|
|
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
|
|
at the end of the fiber span.
|
|
"""
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
if 'gn_model_analytic' == sim_params.nli_params.nli_method_name.lower():
|
|
carrier_nli = self._gn_analytic(carrier, *carriers)
|
|
elif 'ggn_spectrally_separated' in sim_params.nli_params.nli_method_name.lower():
|
|
eta_matrix = self._compute_eta_matrix(carrier, *carriers)
|
|
carrier_nli = self._carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers)
|
|
else:
|
|
raise ValueError(f'Method {sim_params.nli_params.method_nli} not implemented.')
|
|
|
|
return carrier_nli
|
|
|
|
@staticmethod
|
|
def _carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers):
|
|
carrier_nli = 0
|
|
for pump_carrier_1 in carriers:
|
|
for pump_carrier_2 in carriers:
|
|
carrier_nli += eta_matrix[pump_carrier_1.channel_number - 1, pump_carrier_2.channel_number - 1] * \
|
|
pump_carrier_1.power.signal * pump_carrier_2.power.signal
|
|
carrier_nli *= carrier.power.signal
|
|
|
|
return carrier_nli
|
|
|
|
def _compute_eta_matrix(self, cut_carrier, *carriers):
|
|
cut_index = cut_carrier.channel_number - 1
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
# Matrix initialization
|
|
matrix_size = max(carriers, key=lambda x: getattr(x, 'channel_number')).channel_number
|
|
eta_matrix = zeros(shape=(matrix_size, matrix_size))
|
|
|
|
# SPM
|
|
logger.debug(f'Start computing SPM on channel #{cut_carrier.channel_number}')
|
|
# SPM GGN
|
|
if 'ggn' in sim_params.nli_params.nli_method_name.lower():
|
|
partial_nli = self._generalized_spectrally_separated_spm(cut_carrier)
|
|
# SPM GN
|
|
elif 'gn' in sim_params.nli_params.nli_method_name.lower():
|
|
partial_nli = self._gn_analytic(cut_carrier, *[cut_carrier])
|
|
eta_matrix[cut_index, cut_index] = partial_nli / (cut_carrier.power.signal**3)
|
|
|
|
# XPM
|
|
for pump_carrier in carriers:
|
|
pump_index = pump_carrier.channel_number - 1
|
|
if not (cut_index == pump_index):
|
|
logger.debug(f'Start computing XPM on channel #{cut_carrier.channel_number} '
|
|
f'from channel #{pump_carrier.channel_number}')
|
|
# XPM GGN
|
|
if 'ggn' in sim_params.nli_params.nli_method_name.lower():
|
|
partial_nli = self._generalized_spectrally_separated_xpm(cut_carrier, pump_carrier)
|
|
# XPM GGN
|
|
elif 'gn' in sim_params.nli_params.nli_method_name.lower():
|
|
partial_nli = self._gn_analytic(cut_carrier, *[pump_carrier])
|
|
eta_matrix[pump_index, pump_index] = \
|
|
partial_nli / (cut_carrier.power.signal * pump_carrier.power.signal**2)
|
|
return eta_matrix
|
|
|
|
# Methods for computing GN-model
|
|
def _gn_analytic(self, carrier, *carriers):
|
|
""" Computes the nonlinear interference power on a single carrier.
|
|
The method uses eq. 120 from arXiv:1209.0394.
|
|
:param carrier: the signal under analysis
|
|
:param carriers: the full WDM comb
|
|
:return: carrier_nli: the amount of nonlinear interference in W on the carrier under analysis
|
|
"""
|
|
beta2 = self.fiber.params.beta2
|
|
gamma = self.fiber.params.gamma
|
|
effective_length = self.fiber.params.effective_length
|
|
asymptotic_length = self.fiber.params.asymptotic_length
|
|
|
|
g_nli = 0
|
|
for interfering_carrier in carriers:
|
|
g_interfering = interfering_carrier.power.signal / interfering_carrier.baud_rate
|
|
g_signal = carrier.power.signal / carrier.baud_rate
|
|
g_nli += g_interfering**2 * g_signal \
|
|
* _psi(carrier, interfering_carrier, beta2=beta2, asymptotic_length=asymptotic_length)
|
|
g_nli *= (16.0 / 27.0) * (gamma * effective_length) ** 2 /\
|
|
(2 * pi * abs(beta2) * asymptotic_length)
|
|
carrier_nli = carrier.baud_rate * g_nli
|
|
return carrier_nli
|
|
|
|
# Methods for computing the GGN-model
|
|
def _generalized_spectrally_separated_spm(self, carrier):
|
|
gamma = self.fiber.params.gamma
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
f_cut_resolution = sim_params.nli_params.f_cut_resolution['delta_0']
|
|
f_eval = carrier.frequency
|
|
g_cut = (carrier.power.signal / carrier.baud_rate)
|
|
|
|
spm_nli = carrier.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_cut ** 3 * \
|
|
self._generalized_psi(carrier, carrier, f_eval, f_cut_resolution, f_cut_resolution)
|
|
return spm_nli
|
|
|
|
def _generalized_spectrally_separated_xpm(self, cut_carrier, pump_carrier):
|
|
gamma = self.fiber.params.gamma
|
|
simulation = Simulation.get_simulation()
|
|
sim_params = simulation.sim_params
|
|
delta_index = pump_carrier.channel_number - cut_carrier.channel_number
|
|
f_cut_resolution = sim_params.nli_params.f_cut_resolution[f'delta_{delta_index}']
|
|
f_pump_resolution = sim_params.nli_params.f_pump_resolution
|
|
f_eval = cut_carrier.frequency
|
|
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
|
|
g_cut = (cut_carrier.power.signal / cut_carrier.baud_rate)
|
|
frequency_offset_threshold = self._frequency_offset_threshold(pump_carrier.baud_rate)
|
|
if abs(cut_carrier.frequency - pump_carrier.frequency) <= frequency_offset_threshold:
|
|
xpm_nli = cut_carrier.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_pump**2 * g_cut * \
|
|
2 * self._generalized_psi(cut_carrier, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
|
|
else:
|
|
xpm_nli = cut_carrier.baud_rate * (16.0 / 27.0) * gamma ** 2 * g_pump**2 * g_cut * \
|
|
2 * self._fast_generalized_psi(cut_carrier, pump_carrier, f_eval, f_cut_resolution)
|
|
return xpm_nli
|
|
|
|
def _fast_generalized_psi(self, cut_carrier, pump_carrier, f_eval, f_cut_resolution):
|
|
""" It computes the generalized psi function similarly to the one used in the GN model
|
|
:return: generalized_psi
|
|
"""
|
|
# Fiber parameters
|
|
alpha0 = self.fiber.alpha0(f_eval)
|
|
beta2 = self.fiber.params.beta2
|
|
beta3 = self.fiber.params.beta3
|
|
f_ref_beta = self.fiber.params.ref_frequency
|
|
z = self.stimulated_raman_scattering.z
|
|
frequency_rho = self.stimulated_raman_scattering.frequency
|
|
rho_norm = self.stimulated_raman_scattering.rho * exp(abs(alpha0) * z / 2)
|
|
if len(frequency_rho) == 1:
|
|
def rho_function(f): return rho_norm[0, :]
|
|
else:
|
|
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
|
|
rho_norm_pump = rho_function(pump_carrier.frequency)
|
|
|
|
f1_array = array([pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
|
|
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2)])
|
|
f2_array = arange(cut_carrier.frequency,
|
|
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
|
|
f_cut_resolution) # Only positive f2 is used since integrand_f2 is symmetric
|
|
|
|
integrand_f1 = zeros(len(f1_array))
|
|
for f1_index, f1 in enumerate(f1_array):
|
|
delta_beta = 4 * pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
|
|
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
|
|
integrand_f2 = self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
|
|
integrand_f1[f1_index] = 2 * trapz(integrand_f2, f2_array) # 2x since integrand_f2 is symmetric in f2
|
|
generalized_psi = 0.5 * sum(integrand_f1) * pump_carrier.baud_rate
|
|
return generalized_psi
|
|
|
|
def _generalized_psi(self, cut_carrier, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution):
|
|
""" It computes the generalized psi function similarly to the one used in the GN model
|
|
:return: generalized_psi
|
|
"""
|
|
# Fiber parameters
|
|
alpha0 = self.fiber.alpha0(f_eval)
|
|
beta2 = self.fiber.params.beta2
|
|
beta3 = self.fiber.params.beta3
|
|
f_ref_beta = self.fiber.params.ref_frequency
|
|
z = self.stimulated_raman_scattering.z
|
|
frequency_rho = self.stimulated_raman_scattering.frequency
|
|
rho_norm = self.stimulated_raman_scattering.rho * exp(abs(alpha0) * z / 2)
|
|
if len(frequency_rho) == 1:
|
|
def rho_function(f): return rho_norm[0, :]
|
|
else:
|
|
rho_function = interp1d(frequency_rho, rho_norm, axis=0, fill_value='extrapolate')
|
|
rho_norm_pump = rho_function(pump_carrier.frequency)
|
|
|
|
f1_array = arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
|
|
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
|
|
f_pump_resolution)
|
|
f2_array = arange(cut_carrier.frequency - (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
|
|
cut_carrier.frequency + (cut_carrier.baud_rate * (1 + cut_carrier.roll_off) / 2),
|
|
f_cut_resolution)
|
|
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
|
|
|
|
integrand_f1 = zeros(len(f1_array))
|
|
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
|
|
f3_array = f1 + f2_array - f_eval
|
|
psd2 = raised_cosine_comb(f2_array, cut_carrier) * (cut_carrier.baud_rate / cut_carrier.power.signal)
|
|
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
|
|
ggg = psd1_sample * psd2 * psd3
|
|
|
|
delta_beta = 4 * pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
|
|
(beta2 + pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
|
|
|
|
integrand_f2 = ggg * self._generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0)
|
|
integrand_f1[f1_index] = trapz(integrand_f2, f2_array)
|
|
generalized_psi = trapz(integrand_f1, f1_array)
|
|
return generalized_psi
|
|
|
|
@staticmethod
|
|
def _generalized_rho_nli(delta_beta, rho_norm_pump, z, alpha0):
|
|
w = 1j * delta_beta - alpha0
|
|
generalized_rho_nli = (rho_norm_pump[-1]**2 * exp(w * z[-1]) - rho_norm_pump[0]**2 * exp(w * z[0])) / w
|
|
for z_ind in range(0, len(z) - 1):
|
|
derivative_rho = (rho_norm_pump[z_ind + 1]**2 - rho_norm_pump[z_ind]**2) / (z[z_ind + 1] - z[z_ind])
|
|
generalized_rho_nli -= derivative_rho * (exp(w * z[z_ind + 1]) - exp(w * z[z_ind])) / (w**2)
|
|
generalized_rho_nli = abs(generalized_rho_nli)**2
|
|
return generalized_rho_nli
|
|
|
|
def _frequency_offset_threshold(self, symbol_rate):
|
|
k_ref = 5
|
|
beta2_ref = 21.3e-27
|
|
delta_f_ref = 50e9
|
|
rs_ref = 32e9
|
|
beta2 = abs(self.fiber.params.beta2)
|
|
freq_offset_th = ((k_ref * delta_f_ref) * rs_ref * beta2_ref) / (beta2 * symbol_rate)
|
|
return freq_offset_th
|
|
|
|
|
|
def _psi(carrier, interfering_carrier, beta2, asymptotic_length):
|
|
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
|
|
if carrier.channel_number == interfering_carrier.channel_number: # SCI, SPM
|
|
psi = arcsinh(0.5 * pi**2 * asymptotic_length * abs(beta2) * carrier.baud_rate**2)
|
|
else: # XCI, XPM
|
|
delta_f = carrier.frequency - interfering_carrier.frequency
|
|
psi = arcsinh(pi**2 * asymptotic_length * abs(beta2) *
|
|
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
|
|
psi -= arcsinh(pi**2 * asymptotic_length * abs(beta2) *
|
|
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
|
|
return psi
|
|
|
|
|
|
def estimate_nf_model(type_variety, gain_min, gain_max, nf_min, nf_max):
|
|
if nf_min < -10:
|
|
raise EquipmentConfigError(f'Invalid nf_min value {nf_min!r} for amplifier {type_variety}')
|
|
if nf_max < -10:
|
|
raise EquipmentConfigError(f'Invalid nf_max value {nf_max!r} for amplifier {type_variety}')
|
|
|
|
# NF estimation model based on nf_min and nf_max
|
|
# delta_p: max power dB difference between first and second stage coils
|
|
# dB g1a: first stage gain - internal VOA attenuation
|
|
# nf1, nf2: first and second stage coils
|
|
# calculated by solving nf_{min,max} = nf1 + nf2 / g1a{min,max}
|
|
delta_p = 5
|
|
g1a_min = gain_min - (gain_max - gain_min) - delta_p
|
|
g1a_max = gain_max - delta_p
|
|
nf2 = lin2db((db2lin(nf_min) - db2lin(nf_max)) /
|
|
(1 / db2lin(g1a_max) - 1 / db2lin(g1a_min)))
|
|
nf1 = lin2db(db2lin(nf_min) - db2lin(nf2) / db2lin(g1a_max))
|
|
|
|
if nf1 < 4:
|
|
raise EquipmentConfigError(f'First coil value too low {nf1} for amplifier {type_variety}')
|
|
|
|
# Check 1 dB < delta_p < 6 dB to ensure nf_min and nf_max values make sense.
|
|
# There shouldn't be high nf differences between the two coils:
|
|
# nf2 should be nf1 + 0.3 < nf2 < nf1 + 2
|
|
# If not, recompute and check delta_p
|
|
if not nf1 + 0.3 < nf2 < nf1 + 2:
|
|
nf2 = clip(nf2, nf1 + 0.3, nf1 + 2)
|
|
g1a_max = lin2db(db2lin(nf2) / (db2lin(nf_min) - db2lin(nf1)))
|
|
delta_p = gain_max - g1a_max
|
|
g1a_min = gain_min - (gain_max - gain_min) - delta_p
|
|
if not 1 < delta_p < 11:
|
|
raise EquipmentConfigError(f'Computed \N{greek capital letter delta}P invalid \
|
|
\n 1st coil vs 2nd coil calculated DeltaP {delta_p:.2f} for \
|
|
\n amplifier {type_variety} is not valid: revise inputs \
|
|
\n calculated 1st coil NF = {nf1:.2f}, 2nd coil NF = {nf2:.2f}')
|
|
# Check calculated values for nf1 and nf2
|
|
calc_nf_min = lin2db(db2lin(nf1) + db2lin(nf2) / db2lin(g1a_max))
|
|
if not isclose(nf_min, calc_nf_min, abs_tol=0.01):
|
|
raise EquipmentConfigError(f'nf_min does not match calc_nf_min, {nf_min} vs {calc_nf_min} for amp {type_variety}')
|
|
calc_nf_max = lin2db(db2lin(nf1) + db2lin(nf2) / db2lin(g1a_min))
|
|
if not isclose(nf_max, calc_nf_max, abs_tol=0.01):
|
|
raise EquipmentConfigError(f'nf_max does not match calc_nf_max, {nf_max} vs {calc_nf_max} for amp {type_variety}')
|
|
|
|
return nf1, nf2, delta_p
|