mirror of
				https://github.com/Telecominfraproject/oopt-gnpy.git
				synced 2025-10-31 01:57:54 +00:00 
			
		
		
		
	 44040c4d06
			
		
	
	44040c4d06
	
	
	
		
			
			Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com> Change-Id: I5c8d057dcdab535617eee8de3eccdd806cec403e
		
			
				
	
	
		
			556 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			556 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | ||
| # -*- coding: utf-8 -*-
 | ||
| 
 | ||
| """
 | ||
| gnpy.core.parameters
 | ||
| ====================
 | ||
| 
 | ||
| This module contains all parameters to configure standard network elements.
 | ||
| """
 | ||
| from collections import namedtuple
 | ||
| 
 | ||
| from scipy.constants import c, pi
 | ||
| from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
 | ||
| 
 | ||
| from gnpy.core.utils import convert_length
 | ||
| from gnpy.core.exceptions import ParametersError
 | ||
| 
 | ||
| 
 | ||
| class Parameters:
 | ||
|     def asdict(self):
 | ||
|         class_dict = self.__class__.__dict__
 | ||
|         instance_dict = self.__dict__
 | ||
|         new_dict = {}
 | ||
|         for key in class_dict:
 | ||
|             if isinstance(class_dict[key], property):
 | ||
|                 new_dict[key] = instance_dict['_' + key]
 | ||
|         return new_dict
 | ||
| 
 | ||
| 
 | ||
| class PumpParams(Parameters):
 | ||
|     def __init__(self, power, frequency, propagation_direction):
 | ||
|         self.power = power
 | ||
|         self.frequency = frequency
 | ||
|         self.propagation_direction = propagation_direction.lower()
 | ||
| 
 | ||
| 
 | ||
| class RamanParams(Parameters):
 | ||
|     def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
 | ||
|         """Simulation parameters used within the Raman Solver
 | ||
| 
 | ||
|         :params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
 | ||
|         :params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
 | ||
|         :params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
 | ||
|         """
 | ||
|         self.flag = flag
 | ||
|         self.result_spatial_resolution = result_spatial_resolution  # [m]
 | ||
|         self.solver_spatial_resolution = solver_spatial_resolution  # [m]
 | ||
| 
 | ||
|     def to_json(self):
 | ||
|         return {"flag": self.flag,
 | ||
|                 "result_spatial_resolution": self.result_spatial_resolution,
 | ||
|                 "solver_spatial_resolution": self.solver_spatial_resolution}
 | ||
| 
 | ||
| 
 | ||
| class NLIParams(Parameters):
 | ||
|     def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
 | ||
|                  computed_channels=None, computed_number_of_channels=None):
 | ||
|         """Simulation parameters used within the Nli Solver
 | ||
| 
 | ||
|         :params method: formula for NLI calculation
 | ||
|         :params dispersion_tolerance: tuning parameter for ggn model solution
 | ||
|         :params phase_shift_tolerance: tuning parameter for ggn model solution
 | ||
|         :params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
 | ||
|         :params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
 | ||
|         in the spectrum and extrapolated for the others
 | ||
|         """
 | ||
|         self.method = method.lower()
 | ||
|         self.dispersion_tolerance = dispersion_tolerance
 | ||
|         self.phase_shift_tolerance = phase_shift_tolerance
 | ||
|         self.computed_channels = computed_channels
 | ||
|         self.computed_number_of_channels = computed_number_of_channels
 | ||
| 
 | ||
|     def to_json(self):
 | ||
|         return {"method": self.method,
 | ||
|                 "dispersion_tolerance": self.dispersion_tolerance,
 | ||
|                 "phase_shift_tolerance": self.phase_shift_tolerance,
 | ||
|                 "computed_channels": self.computed_channels}
 | ||
| 
 | ||
| 
 | ||
| class SimParams(Parameters):
 | ||
|     _shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def set_params(cls, sim_params):
 | ||
|         cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
 | ||
|         cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
 | ||
| 
 | ||
|     @property
 | ||
|     def nli_params(self):
 | ||
|         return self._shared_dict['nli_params']
 | ||
| 
 | ||
|     @property
 | ||
|     def raman_params(self):
 | ||
|         return self._shared_dict['raman_params']
 | ||
| 
 | ||
| 
 | ||
| class RoadmParams(Parameters):
 | ||
|     def __init__(self, **kwargs):
 | ||
|         self.target_pch_out_db = kwargs.get('target_pch_out_db')
 | ||
|         self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
 | ||
|         self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
 | ||
|         equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
 | ||
|         temp = [kwargs.get(k) is not None for k in equalisation_type]
 | ||
|         if sum(temp) > 1:
 | ||
|             raise ParametersError('ROADM config contains more than one equalisation type.'
 | ||
|                                   + 'Please choose only one', kwargs)
 | ||
|         self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
 | ||
|         self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
 | ||
|         self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
 | ||
|         try:
 | ||
|             self.add_drop_osnr = kwargs['add_drop_osnr']
 | ||
|             self.pmd = kwargs['pmd']
 | ||
|             self.pdl = kwargs['pdl']
 | ||
|             self.restrictions = kwargs['restrictions']
 | ||
|         except KeyError as e:
 | ||
|             raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
 | ||
| 
 | ||
| 
 | ||
| class FusedParams(Parameters):
 | ||
|     def __init__(self, **kwargs):
 | ||
|         self.loss = kwargs['loss'] if 'loss' in kwargs else 1
 | ||
| 
 | ||
| 
 | ||
| DEFAULT_RAMAN_COEFFICIENT = {
 | ||
|     # SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
 | ||
|     'gamma_raman': array(
 | ||
|         [0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
 | ||
|          7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
 | ||
|          1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
 | ||
|          1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
 | ||
|          1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
 | ||
|          2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
 | ||
|          3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
 | ||
|          3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
 | ||
|          2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
 | ||
|          6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
 | ||
|          7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
 | ||
|          2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
 | ||
|          2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
 | ||
|          5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
 | ||
|          2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
 | ||
|          1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
 | ||
|          7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
 | ||
|          1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
 | ||
|          8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
 | ||
|          9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
 | ||
|          6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
 | ||
|          1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
 | ||
|          7.404482113326137e-18]
 | ||
|     ),  # m/W
 | ||
|     # SSMF Raman coefficient profile
 | ||
|     'g0': array(
 | ||
|         [0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
 | ||
|          1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
 | ||
|          1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
 | ||
|          3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
 | ||
|          4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
 | ||
|          1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
 | ||
|          8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
 | ||
|          2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
 | ||
|          3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
 | ||
|          9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
 | ||
|          2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
 | ||
|          1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
 | ||
|          2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
 | ||
|     ),  # [1 / (W m)]
 | ||
| 
 | ||
|     # Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
 | ||
|     'frequency_offset': array([
 | ||
|         0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
 | ||
|         12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
 | ||
|         19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
 | ||
|         29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
 | ||
|         39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12,  # [Hz]
 | ||
| 
 | ||
|     # Raman profile reference frequency
 | ||
|     'reference_frequency': 206.184634112792e12,  # [Hz] (1454 nm)
 | ||
| 
 | ||
|     # Raman profile reference effective area
 | ||
|     'reference_effective_area': 75.74659443542413e-12  # [m^2] (@1454 nm)
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
 | ||
|     """ Raman Gain Coefficient Parameters
 | ||
| 
 | ||
|         Based on:
 | ||
|             Andrea D’Amico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
 | ||
|             and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
 | ||
|             J. Lightwave Technol. 40, 3499-3511 (2022)
 | ||
|             Section III.D
 | ||
|     """
 | ||
| 
 | ||
| 
 | ||
| class FiberParams(Parameters):
 | ||
|     def __init__(self, **kwargs):
 | ||
|         try:
 | ||
|             self._length = convert_length(kwargs['length'], kwargs['length_units'])
 | ||
|             # fixed attenuator for padding
 | ||
|             self._att_in = kwargs.get('att_in', 0)
 | ||
|             # if not defined in the network json connector loss in/out
 | ||
|             # the None value will be updated in network.py[build_network]
 | ||
|             # with default values from eqpt_config.json[Spans]
 | ||
|             self._con_in = kwargs.get('con_in')
 | ||
|             self._con_out = kwargs.get('con_out')
 | ||
| 
 | ||
|             # Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
 | ||
|             if 'ref_wavelength' in kwargs:
 | ||
|                 self._ref_wavelength = kwargs['ref_wavelength']
 | ||
|                 self._ref_frequency = c / self._ref_wavelength
 | ||
|             elif 'ref_frequency' in kwargs:
 | ||
|                 self._ref_frequency = kwargs['ref_frequency']
 | ||
|                 self._ref_wavelength = c / self._ref_frequency
 | ||
|             else:
 | ||
|                 self._ref_wavelength = 1550e-9  # conventional central C band wavelength [m]
 | ||
|                 self._ref_frequency = c / self._ref_wavelength
 | ||
| 
 | ||
|             # Chromatic Dispersion
 | ||
|             if 'dispersion_per_frequency' in kwargs:
 | ||
|                 # Frequency-dependent dispersion
 | ||
|                 self._dispersion = asarray(kwargs['dispersion_per_frequency']['value'])  # s/m/m
 | ||
|                 self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency'])  # Hz
 | ||
|                 self._dispersion_slope = None
 | ||
|             elif 'dispersion' in kwargs:
 | ||
|                 # Single value dispersion
 | ||
|                 self._dispersion = asarray(kwargs['dispersion'])  # s/m/m
 | ||
|                 self._dispersion_slope = kwargs.get('dispersion_slope')  # s/m/m/m
 | ||
|                 self._f_dispersion_ref = asarray(self._ref_frequency)  # Hz
 | ||
|             else:
 | ||
|                 # Default single value dispersion
 | ||
|                 self._dispersion = asarray(1.67e-05)  # s/m/m
 | ||
|                 self._dispersion_slope = None
 | ||
|                 self._f_dispersion_ref = asarray(self.ref_frequency)  # Hz
 | ||
| 
 | ||
|             # Effective Area and Nonlinear Coefficient
 | ||
|             self._effective_area = kwargs.get('effective_area')  # m^2
 | ||
|             self._n1 = 1.468
 | ||
|             self._core_radius = 4.2e-6  # m
 | ||
|             self._n2 = 2.6e-20  # m^2/W
 | ||
|             if self._effective_area is not None:
 | ||
|                 default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
 | ||
|                 self._gamma = kwargs.get('gamma', default_gamma)  # 1/W/m
 | ||
|             elif 'gamma' in kwargs:
 | ||
|                 self._gamma = kwargs['gamma']  # 1/W/m
 | ||
|                 self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma)  # m^2
 | ||
|             else:
 | ||
|                 self._effective_area = 83e-12  # m^2
 | ||
|                 self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)  # 1/W/m
 | ||
|             self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
 | ||
|                 pi * self._core_radius ** 2 / self._effective_area)) ** 2
 | ||
| 
 | ||
|             # Raman Gain Coefficient
 | ||
|             raman_coefficient = kwargs.get('raman_coefficient')
 | ||
|             if raman_coefficient is None:
 | ||
|                 self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
 | ||
|                 frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
 | ||
|                 gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
 | ||
|                 stokes_wave = self._raman_reference_frequency - frequency_offset
 | ||
|                 normalized_gamma_raman = gamma_raman / self._raman_reference_frequency  # 1 / m / W / Hz
 | ||
|                 self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
 | ||
|             else:
 | ||
|                 self._raman_reference_frequency = raman_coefficient['reference_frequency']
 | ||
|                 frequency_offset = asarray(raman_coefficient['frequency_offset'])
 | ||
|                 stokes_wave = self._raman_reference_frequency - frequency_offset
 | ||
|                 self._g0 = asarray(raman_coefficient['g0'])
 | ||
|                 gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
 | ||
|                 normalized_gamma_raman = gamma_raman / self._raman_reference_frequency  # 1 / m / W / Hz
 | ||
| 
 | ||
|             # Raman gain coefficient array of the frequency offset constructed such that positive frequency values
 | ||
|             # represent a positive power transfer from higher frequency and vice versa
 | ||
|             frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
 | ||
|             normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
 | ||
|             self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
 | ||
| 
 | ||
|             # Polarization Mode Dispersion
 | ||
|             self._pmd_coef = kwargs['pmd_coef']  # s/sqrt(m)
 | ||
| 
 | ||
|             # Loss Coefficient
 | ||
|             if isinstance(kwargs['loss_coef'], dict):
 | ||
|                 self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3  # lineic loss dB/m
 | ||
|                 self._f_loss_ref = asarray(kwargs['loss_coef']['frequency'])  # Hz
 | ||
|             else:
 | ||
|                 self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3  # lineic loss dB/m
 | ||
|                 self._f_loss_ref = asarray(self._ref_frequency)  # Hz
 | ||
|             # Lumped Losses
 | ||
|             self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
 | ||
|             self._latency = self._length / (c / self._n1)  # s
 | ||
|         except KeyError as e:
 | ||
|             raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
 | ||
| 
 | ||
|     @property
 | ||
|     def length(self):
 | ||
|         return self._length
 | ||
| 
 | ||
|     @length.setter
 | ||
|     def length(self, length):
 | ||
|         """length must be in m"""
 | ||
|         self._length = length
 | ||
| 
 | ||
|     @property
 | ||
|     def att_in(self):
 | ||
|         return self._att_in
 | ||
| 
 | ||
|     @att_in.setter
 | ||
|     def att_in(self, att_in):
 | ||
|         self._att_in = att_in
 | ||
| 
 | ||
|     @property
 | ||
|     def con_in(self):
 | ||
|         return self._con_in
 | ||
| 
 | ||
|     @con_in.setter
 | ||
|     def con_in(self, con_in):
 | ||
|         self._con_in = con_in
 | ||
| 
 | ||
|     @property
 | ||
|     def con_out(self):
 | ||
|         return self._con_out
 | ||
| 
 | ||
|     @property
 | ||
|     def lumped_losses(self):
 | ||
|         return self._lumped_losses
 | ||
| 
 | ||
|     @con_out.setter
 | ||
|     def con_out(self, con_out):
 | ||
|         self._con_out = con_out
 | ||
| 
 | ||
|     @property
 | ||
|     def dispersion(self):
 | ||
|         return self._dispersion
 | ||
| 
 | ||
|     @property
 | ||
|     def f_dispersion_ref(self):
 | ||
|         return self._f_dispersion_ref
 | ||
| 
 | ||
|     @property
 | ||
|     def dispersion_slope(self):
 | ||
|         return self._dispersion_slope
 | ||
| 
 | ||
|     @property
 | ||
|     def gamma(self):
 | ||
|         return self._gamma
 | ||
| 
 | ||
|     def effective_area_scaling(self, frequency):
 | ||
|         V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
 | ||
|         w = self._core_radius / sqrt(log(V))
 | ||
|         return asarray(pi * w ** 2)
 | ||
| 
 | ||
|     def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
 | ||
|         effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
 | ||
|         effective_area_pump = self.effective_area_scaling(frequency_pump)
 | ||
|         return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
 | ||
|             ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
 | ||
| 
 | ||
|     def gamma_scaling(self, frequency):
 | ||
|         return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
 | ||
| 
 | ||
|     @property
 | ||
|     def pmd_coef(self):
 | ||
|         return self._pmd_coef
 | ||
| 
 | ||
|     @property
 | ||
|     def ref_wavelength(self):
 | ||
|         return self._ref_wavelength
 | ||
| 
 | ||
|     @property
 | ||
|     def ref_frequency(self):
 | ||
|         return self._ref_frequency
 | ||
| 
 | ||
|     @property
 | ||
|     def loss_coef(self):
 | ||
|         return self._loss_coef
 | ||
| 
 | ||
|     @property
 | ||
|     def f_loss_ref(self):
 | ||
|         return self._f_loss_ref
 | ||
| 
 | ||
|     @property
 | ||
|     def raman_coefficient(self):
 | ||
|         return self._raman_coefficient
 | ||
| 
 | ||
|     @property
 | ||
|     def latency(self):
 | ||
|         return self._latency
 | ||
| 
 | ||
|     def asdict(self):
 | ||
|         dictionary = super().asdict()
 | ||
|         dictionary['loss_coef'] = self.loss_coef * 1e3
 | ||
|         dictionary['length_units'] = 'm'
 | ||
|         if len(self.lumped_losses) == 0:
 | ||
|             dictionary.pop('lumped_losses')
 | ||
|         if not self.raman_coefficient:
 | ||
|             dictionary.pop('raman_coefficient')
 | ||
|         else:
 | ||
|             raman_frequency_offset = \
 | ||
|                 self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
 | ||
|             dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
 | ||
|                                                'frequency_offset': raman_frequency_offset.tolist(),
 | ||
|                                                'reference_frequency': self._raman_reference_frequency}
 | ||
|         return dictionary
 | ||
| 
 | ||
| 
 | ||
| class EdfaParams:
 | ||
|     default_values = {
 | ||
|         'f_min': 191.3e12,
 | ||
|         'f_max': 196.1e12,
 | ||
|         'multi_band': None,
 | ||
|         'bands': [],
 | ||
|         'type_variety': '',
 | ||
|         'type_def': '',
 | ||
|         'gain_flatmax': None,
 | ||
|         'gain_min': None,
 | ||
|         'p_max': None,
 | ||
|         'nf_model': None,
 | ||
|         'dual_stage_model': None,
 | ||
|         'preamp_variety': None,
 | ||
|         'booster_variety': None,
 | ||
|         'nf_min': None,
 | ||
|         'nf_max': None,
 | ||
|         'nf_coef': None,
 | ||
|         'nf0': None,
 | ||
|         'nf_fit_coeff': None,
 | ||
|         'nf_ripple': 0,
 | ||
|         'dgt': None,
 | ||
|         'gain_ripple': 0,
 | ||
|         'tilt_ripple': 0,
 | ||
|         'f_ripple_ref': None,
 | ||
|         'out_voa_auto': False,
 | ||
|         'allowed_for_design': False,
 | ||
|         'raman': False,
 | ||
|         'pmd': 0,
 | ||
|         'pdl': 0,
 | ||
|         'advance_configurations_from_json': None
 | ||
|     }
 | ||
| 
 | ||
|     def __init__(self, **params):
 | ||
|         try:
 | ||
|             self.type_variety = params['type_variety']
 | ||
|             self.type_def = params['type_def']
 | ||
| 
 | ||
|             # Bandwidth
 | ||
|             self.f_min = params['f_min']
 | ||
|             self.f_max = params['f_max']
 | ||
|             self.bandwidth = self.f_max - self.f_min
 | ||
|             self.f_cent = (self.f_max + self.f_min) / 2
 | ||
|             self.f_ripple_ref = params['f_ripple_ref']
 | ||
| 
 | ||
|             # Gain
 | ||
|             self.gain_flatmax = params['gain_flatmax']
 | ||
|             self.gain_min = params['gain_min']
 | ||
| 
 | ||
|             gain_ripple = params['gain_ripple']
 | ||
|             if gain_ripple == 0:
 | ||
|                 self.gain_ripple = asarray([0, 0])
 | ||
|                 self.f_ripple_ref = asarray([self.f_min, self.f_max])
 | ||
|             else:
 | ||
|                 self.gain_ripple = asarray(gain_ripple)
 | ||
|                 if self.f_ripple_ref is not None:
 | ||
|                     if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
 | ||
|                         raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
 | ||
|                                               "with the EDFA frequency maximum and minimum.")
 | ||
|                     elif self.gain_ripple.size != self.f_ripple_ref.size:
 | ||
|                         raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
 | ||
|                                               "size.")
 | ||
|                 else:
 | ||
|                     self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
 | ||
| 
 | ||
|             tilt_ripple = params['tilt_ripple']
 | ||
| 
 | ||
|             if tilt_ripple == 0:
 | ||
|                 self.tilt_ripple = full(self.gain_ripple.size, 0)
 | ||
|             else:
 | ||
|                 self.tilt_ripple = asarray(tilt_ripple)
 | ||
|                 if self.tilt_ripple.size != self.gain_ripple.size:
 | ||
|                     raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
 | ||
| 
 | ||
|             # Power
 | ||
|             self.p_max = params['p_max']
 | ||
| 
 | ||
|             # Noise Figure
 | ||
|             self.nf_model = params['nf_model']
 | ||
|             self.nf_min = params['nf_min']
 | ||
|             self.nf_max = params['nf_max']
 | ||
|             self.nf_coef = params['nf_coef']
 | ||
|             self.nf0 = params['nf0']
 | ||
|             self.nf_fit_coeff = params['nf_fit_coeff']
 | ||
| 
 | ||
|             nf_ripple = params['nf_ripple']
 | ||
|             if nf_ripple == 0:
 | ||
|                 self.nf_ripple = full(self.gain_ripple.size, 0)
 | ||
|             else:
 | ||
|                 self.nf_ripple = asarray(nf_ripple)
 | ||
|                 if self.nf_ripple.size != self.gain_ripple.size:
 | ||
|                     raise ParametersError("The noise figure ripple and the gain ripple must have the same size.")
 | ||
| 
 | ||
|             # VOA
 | ||
|             self.out_voa_auto = params['out_voa_auto']
 | ||
| 
 | ||
|             # Dual Stage
 | ||
|             self.dual_stage_model = params['dual_stage_model']
 | ||
|             if self.dual_stage_model is not None:
 | ||
|                 # Preamp
 | ||
|                 self.preamp_variety = params['preamp_variety']
 | ||
|                 self.preamp_type_def = params['preamp_type_def']
 | ||
|                 self.preamp_nf_model = params['preamp_nf_model']
 | ||
|                 self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
 | ||
|                 self.preamp_gain_min = params['preamp_gain_min']
 | ||
|                 self.preamp_gain_flatmax = params['preamp_gain_flatmax']
 | ||
| 
 | ||
|                 # Booster
 | ||
|                 self.booster_variety = params['booster_variety']
 | ||
|                 self.booster_type_def = params['booster_type_def']
 | ||
|                 self.booster_nf_model = params['booster_nf_model']
 | ||
|                 self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
 | ||
|                 self.booster_gain_min = params['booster_gain_min']
 | ||
|                 self.booster_gain_flatmax = params['booster_gain_flatmax']
 | ||
| 
 | ||
|             # Others
 | ||
|             self.pmd = params['pmd']
 | ||
|             self.pdl = params['pdl']
 | ||
|             self.raman = params['raman']
 | ||
|             self.dgt = params['dgt']
 | ||
|             self.advance_configurations_from_json = params['advance_configurations_from_json']
 | ||
| 
 | ||
|             # Design
 | ||
|             self.allowed_for_design = params['allowed_for_design']
 | ||
| 
 | ||
|         except KeyError as e:
 | ||
|             raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
 | ||
| 
 | ||
|     def update_params(self, kwargs):
 | ||
|         for k, v in kwargs.items():
 | ||
|             setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
 | ||
| 
 | ||
| 
 | ||
| class EdfaOperational:
 | ||
|     default_values = {
 | ||
|         'gain_target': None,
 | ||
|         'delta_p': None,
 | ||
|         'out_voa': None,
 | ||
|         'tilt_target': 0
 | ||
|     }
 | ||
| 
 | ||
|     def __init__(self, **operational):
 | ||
|         self.update_attr(operational)
 | ||
| 
 | ||
|     def update_attr(self, kwargs):
 | ||
|         clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
 | ||
|         for k, v in self.default_values.items():
 | ||
|             setattr(self, k, clean_kwargs.get(k, v))
 | ||
| 
 | ||
|     def __repr__(self):
 | ||
|         return (f'{type(self).__name__}('
 | ||
|                 f'gain_target={self.gain_target!r}, '
 | ||
|                 f'tilt_target={self.tilt_target!r})')
 |