mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-31 18:18:00 +00:00
On a ROADM, the code would previously set the same per-carrier power
regardless of the channel spectrum width. With this patch, carriers are
equalized either by their:
- absolute power (same as before),
- power spectral density (PSD).
Also, it's possible to apply a per-channel power offset (in dB) which
will be applied to a specified channel on top of the selected
power-level or PSD strategy. The same offset can be also selected
through the `--spectrum` option via the `default_pdb` parameter.
The equalization policy can be set via the ROADM model (in the equipment
config) as well as on a per-instance basis.
The PSD is defined as the absolute power over a spectral bandwidth,
where the spectral bandwidth corresponds to the actual spectrum
occupation (without any applicable guard bands), as approximated by the
symbol rate. PSD is specified in mW/GHz. As an example, for a 32 GBaud
signal at 0.01 mW, the PSD is 0.01/32 = 3.125e-4 mW/GHz.
This has some implications on the power sweep and ROADM behavior. Same
as previously (with absolute power targets), the ROADM design determines
the power set points. Target power is usually the best (highest) power
that can be supported by the ROADMs, especially the Add/Drop and express
stages' losses, with the goal to maximize the power at the booster's
input. As such, the `--power` option (or the power sweep) doesn't
manipulate with ROADM's target output power, but only with the output
power of the amplifiers. With PSD equalization, the `--power` option is
interpreted as the power of the reference channel defined in equipment
config's `SI` container, and its PSD is used for propagation. Power
sweep is interpreted in the same way, e.g.:
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": 0,
"power_range_db": [-1,1,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}],
...and with the PSD equalization in a ROADM:
{
"uid": "roadm A",
"type": "Roadm",
"params": {
"target_psd_out_mWperGHz": 3.125e-4,
}
},
{
"uid": "edfa in roadm A to toto",
"type": "Edfa",
"type_variety": "standard_medium_gain",
"operational": {
"gain_target": 22,
"delta_p": 2,
"tilt_target": 0.0,
"out_voa": 0
}
},
then we use the power steps of the power_range_db to compute resulting
powers of each carrier out of the booster amp:
power_db = psd2powerdbm(target_psd_out_mWperGHz, baud_rate)
sweep = power_db + delta_power for delta_power in power_range_db
Assuming one 32Gbaud and one 64Gbaud carriers:
32 Gbaud 64 Gbaud
roadmA out power
(sig+ase+nli) -20dBm -17dBm
EDFA out power
range[
-1 1dBm 4dBm
0 2dBm 5dBm
1 3dBm 6dBm
]
Design case:
Design is performed based on the reference channel set defined in SI
in equipment config (independantly of equalization process):
"SI":[{
"f_min": 191.3e12,
"baud_rate": 32e9,
"f_max":195.1e12,
"spacing": 50e9,
"power_dbm": -1,
"power_range_db": [0,0,1],
"roll_off": 0.15,
"tx_osnr": 40,
"sys_margins": 2
}],
`delta_p` values of amps refer to this reference channel, but are applicable
for any baudrate during propagation, e.g.:
{
"uid": "roadm A",
"type": "Roadm",
"params": {
"target_psd_out_mWperGHz": 2.717e-4,
}
},
{
"uid": "edfa in roadm A to toto",
"type": "Edfa",
"type_variety": "standard_medium_gain",
"operational": {
"gain_target": 22,
"delta_p": 2,
"tilt_target": 0.0,
"out_voa": 0
}
},
Then the output power for a 64 Gbaud carrier will be +4 =
= lin2db(db2lin(power_dbm + delta_p)/32e9 * 64e9)
= lin2db(db2lin(power_dbm + delta_p) * 2)
= powerdbm + delta + 3 = 4 dBm
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I28bcfeb72b0e74380b087762bb92ba5d39219eb3
459 lines
22 KiB
Python
459 lines
22 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
'''
|
|
gnpy.tools.cli_examples
|
|
=======================
|
|
|
|
Common code for CLI examples
|
|
'''
|
|
|
|
import argparse
|
|
import logging
|
|
import sys
|
|
from math import ceil
|
|
from numpy import linspace, mean
|
|
from pathlib import Path
|
|
|
|
import gnpy.core.ansi_escapes as ansi_escapes
|
|
from gnpy.core.elements import Transceiver, Fiber, RamanFiber
|
|
from gnpy.core.equipment import trx_mode_params
|
|
import gnpy.core.exceptions as exceptions
|
|
from gnpy.core.network import build_network
|
|
from gnpy.core.parameters import SimParams
|
|
from gnpy.core.utils import db2lin, lin2db, automatic_nch
|
|
from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation,
|
|
BLOCKING_NOPATH, correct_json_route_list,
|
|
deduplicate_disjunctions, compute_path_with_disjunction,
|
|
PathRequest, compute_constrained_path, propagate)
|
|
from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum
|
|
from gnpy.tools.json_io import (load_equipment, load_network, load_json, load_requests, save_network,
|
|
requests_from_json, disjunctions_from_json, save_json, load_initial_spectrum)
|
|
from gnpy.tools.plots import plot_baseline, plot_results
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
_examples_dir = Path(__file__).parent.parent / 'example-data'
|
|
_help_footer = '''
|
|
This program is part of GNPy, https://github.com/TelecomInfraProject/oopt-gnpy
|
|
|
|
Learn more at https://gnpy.readthedocs.io/
|
|
|
|
'''
|
|
_help_fname_json = 'FILE.json'
|
|
_help_fname_json_csv = 'FILE.(json|csv)'
|
|
|
|
|
|
def show_example_data_dir():
|
|
print(f'{_examples_dir}/')
|
|
|
|
|
|
def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename):
|
|
'''Load common configuration from JSON files'''
|
|
|
|
try:
|
|
equipment = load_equipment(equipment_filename)
|
|
network = load_network(topology_filename, equipment)
|
|
if save_raw_network_filename is not None:
|
|
save_network(network, save_raw_network_filename)
|
|
print(f'{ansi_escapes.blue}Raw network (no optimizations) saved to {save_raw_network_filename}{ansi_escapes.reset}')
|
|
if not simulation_filename:
|
|
sim_params = {}
|
|
if next((node for node in network if isinstance(node, RamanFiber)), None) is not None:
|
|
print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} '
|
|
f'RamanFiber requires passing simulation params via --sim-params')
|
|
sys.exit(1)
|
|
else:
|
|
sim_params = load_json(simulation_filename)
|
|
SimParams.set_params(sim_params)
|
|
except exceptions.EquipmentConfigError as e:
|
|
print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
except exceptions.NetworkTopologyError as e:
|
|
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
except exceptions.ParametersError as e:
|
|
print(f'{ansi_escapes.red}Simulation parameters error:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
except exceptions.ConfigurationError as e:
|
|
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
except exceptions.ServiceError as e:
|
|
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
|
|
return (equipment, network)
|
|
|
|
|
|
def _setup_logging(args):
|
|
logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG))
|
|
|
|
|
|
def _add_common_options(parser: argparse.ArgumentParser, network_default: Path):
|
|
parser.add_argument('topology', nargs='?', type=Path, metavar='NETWORK-TOPOLOGY.(json|xls|xlsx)',
|
|
default=network_default,
|
|
help='Input network topology')
|
|
parser.add_argument('-v', '--verbose', action='count', default=0,
|
|
help='Increase verbosity (can be specified several times)')
|
|
parser.add_argument('-e', '--equipment', type=Path, metavar=_help_fname_json,
|
|
default=_examples_dir / 'eqpt_config.json', help='Equipment library')
|
|
parser.add_argument('--sim-params', type=Path, metavar=_help_fname_json,
|
|
default=None, help='Path to the JSON containing simulation parameters (required for Raman). '
|
|
f'Example: {_examples_dir / "sim_params.json"}')
|
|
parser.add_argument('--save-network', type=Path, metavar=_help_fname_json,
|
|
help='Save the final network as a JSON file')
|
|
parser.add_argument('--save-network-before-autodesign', type=Path, metavar=_help_fname_json,
|
|
help='Dump the network into a JSON file prior to autodesign')
|
|
parser.add_argument('--no-insert-edfas', action='store_true',
|
|
help='Disable insertion of EDFAs after ROADMs and fibers '
|
|
'as well as splitting of fibers by auto-design.')
|
|
|
|
|
|
def transmission_main_example(args=None):
|
|
parser = argparse.ArgumentParser(
|
|
description='Send a full spectrum load through the network from point A to point B',
|
|
epilog=_help_footer,
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
_add_common_options(parser, network_default=_examples_dir / 'edfa_example_network.json')
|
|
parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR and GSNR summary')
|
|
parser.add_argument('-pl', '--plot', action='store_true')
|
|
parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes')
|
|
parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm')
|
|
parser.add_argument('--spectrum', type=Path, help='user defined mixed rate spectrum JSON file')
|
|
parser.add_argument('source', nargs='?', help='source node')
|
|
parser.add_argument('destination', nargs='?', help='destination node')
|
|
|
|
args = parser.parse_args(args if args is not None else sys.argv[1:])
|
|
_setup_logging(args)
|
|
|
|
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
|
|
|
|
if args.plot:
|
|
plot_baseline(network)
|
|
|
|
transceivers = {n.uid: n for n in network.nodes() if isinstance(n, Transceiver)}
|
|
|
|
if not transceivers:
|
|
sys.exit('Network has no transceivers!')
|
|
if len(transceivers) < 2:
|
|
sys.exit('Network has only one transceiver!')
|
|
|
|
if args.list_nodes:
|
|
for uid in transceivers:
|
|
print(uid)
|
|
sys.exit()
|
|
|
|
# First try to find exact match if source/destination provided
|
|
if args.source:
|
|
source = transceivers.pop(args.source, None)
|
|
valid_source = True if source else False
|
|
else:
|
|
source = None
|
|
_logger.info('No source node specified: picking random transceiver')
|
|
|
|
if args.destination:
|
|
destination = transceivers.pop(args.destination, None)
|
|
valid_destination = True if destination else False
|
|
else:
|
|
destination = None
|
|
_logger.info('No destination node specified: picking random transceiver')
|
|
|
|
# If no exact match try to find partial match
|
|
if args.source and not source:
|
|
# TODO code a more advanced regex to find nodes match
|
|
source = next((transceivers.pop(uid) for uid in transceivers
|
|
if args.source.lower() in uid.lower()), None)
|
|
|
|
if args.destination and not destination:
|
|
# TODO code a more advanced regex to find nodes match
|
|
destination = next((transceivers.pop(uid) for uid in transceivers
|
|
if args.destination.lower() in uid.lower()), None)
|
|
|
|
# If no partial match or no source/destination provided pick random
|
|
if not source:
|
|
source = list(transceivers.values())[0]
|
|
del transceivers[source.uid]
|
|
|
|
if not destination:
|
|
destination = list(transceivers.values())[0]
|
|
|
|
_logger.info(f'source = {args.source!r}')
|
|
_logger.info(f'destination = {args.destination!r}')
|
|
|
|
params = {}
|
|
params['request_id'] = 0
|
|
params['trx_type'] = ''
|
|
params['trx_mode'] = ''
|
|
params['source'] = source.uid
|
|
params['destination'] = destination.uid
|
|
params['bidir'] = False
|
|
params['nodes_list'] = [destination.uid]
|
|
params['loose_list'] = ['strict']
|
|
params['format'] = ''
|
|
params['path_bandwidth'] = 0
|
|
params['effective_freq_slot'] = None
|
|
trx_params = trx_mode_params(equipment)
|
|
if args.power:
|
|
trx_params['power'] = db2lin(float(args.power)) * 1e-3
|
|
params.update(trx_params)
|
|
initial_spectrum = None
|
|
nb_channels = automatic_nch(trx_params['f_min'], trx_params['f_max'], trx_params['spacing'])
|
|
if args.spectrum:
|
|
initial_spectrum = load_initial_spectrum(args.spectrum)
|
|
nb_channels = len(initial_spectrum)
|
|
print('User input for spectrum used for propagation instead of SI')
|
|
params['nb_channel'] = nb_channels
|
|
req = PathRequest(**params)
|
|
req.initial_spectrum = initial_spectrum
|
|
print(f'There are {nb_channels} channels propagating')
|
|
power_mode = equipment['Span']['default'].power_mode
|
|
print('\n'.join([f'Power mode is set to {power_mode}',
|
|
f'=> it can be modified in eqpt_config.json - Span']))
|
|
|
|
# Keep the reference channel for design: the one from SI, with full load same channels
|
|
pref_ch_db = lin2db(req.power * 1e3) # reference channel power / span (SL=20dB)
|
|
pref_total_db = pref_ch_db + lin2db(req.nb_channel) # reference total power / span (SL=20dB)
|
|
try:
|
|
build_network(network, equipment, pref_ch_db, pref_total_db, args.no_insert_edfas)
|
|
except exceptions.NetworkTopologyError as e:
|
|
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
except exceptions.ConfigurationError as e:
|
|
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
path = compute_constrained_path(network, req)
|
|
|
|
spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)]
|
|
print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} '
|
|
f'and {destination.uid}')
|
|
print(f'\nNow propagating between {source.uid} and {destination.uid}:')
|
|
|
|
power_range = [0]
|
|
if power_mode:
|
|
# power cannot be changed in gain mode
|
|
try:
|
|
p_start, p_stop, p_step = equipment['SI']['default'].power_range_db
|
|
p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1
|
|
power_range = list(linspace(p_start, p_stop, p_num))
|
|
except TypeError:
|
|
print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]')
|
|
for dp_db in power_range:
|
|
req.power = db2lin(pref_ch_db + dp_db) * 1e-3
|
|
# if initial spectrum did not contain any power, now we need to use this one.
|
|
# note the initial power defines a differential wrt req.power so that if req.power is set to 2mW (3dBm)
|
|
# and initial spectrum was set to 0, this sets a initial per channel delta power to -3dB, so that
|
|
# whatever the equalization, -3 dB is applied on all channels (ie initial power in initial spectrum pre-empts
|
|
# "--power" option)
|
|
if power_mode:
|
|
print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:')
|
|
else:
|
|
print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually')
|
|
infos = propagate(path, req, equipment)
|
|
if len(power_range) == 1:
|
|
for elem in path:
|
|
print(elem)
|
|
if power_mode:
|
|
print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:')
|
|
else:
|
|
print(f'\nTransmission results:')
|
|
print(f' Final GSNR (0.1 nm): {ansi_escapes.cyan}{mean(destination.snr_01nm):.02f} dB{ansi_escapes.reset}')
|
|
else:
|
|
print(path[-1])
|
|
|
|
if args.save_network is not None:
|
|
save_network(network, args.save_network)
|
|
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')
|
|
|
|
if args.show_channels:
|
|
print('\nThe GSNR per channel at the end of the line is:')
|
|
print(
|
|
'{:>5}{:>26}{:>26}{:>28}{:>28}{:>28}' .format(
|
|
'Ch. #',
|
|
'Channel frequency (THz)',
|
|
'Channel power (dBm)',
|
|
'OSNR ASE (signal bw, dB)',
|
|
'SNR NLI (signal bw, dB)',
|
|
'GSNR (signal bw, dB)'))
|
|
for final_carrier, ch_osnr, ch_snr_nl, ch_snr in zip(
|
|
infos.carriers, path[-1].osnr_ase, path[-1].osnr_nli, path[-1].snr):
|
|
ch_freq = final_carrier.frequency * 1e-12
|
|
ch_power = lin2db(final_carrier.power.signal * 1e3)
|
|
print(
|
|
'{:5}{:26.5f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format(
|
|
final_carrier.channel_number, round(
|
|
ch_freq, 5), round(
|
|
ch_power, 2), round(
|
|
ch_osnr, 2), round(
|
|
ch_snr_nl, 2), round(
|
|
ch_snr, 2)))
|
|
|
|
if not args.source:
|
|
print(f'\n(No source node specified: picked {source.uid})')
|
|
elif not valid_source:
|
|
print(f'\n(Invalid source node {args.source!r} replaced with {source.uid})')
|
|
|
|
if not args.destination:
|
|
print(f'\n(No destination node specified: picked {destination.uid})')
|
|
elif not valid_destination:
|
|
print(f'\n(Invalid destination node {args.destination!r} replaced with {destination.uid})')
|
|
|
|
if args.plot:
|
|
plot_results(network, path, source, destination)
|
|
|
|
|
|
def _path_result_json(pathresult):
|
|
return {'response': [n.json for n in pathresult]}
|
|
|
|
|
|
def path_requests_run(args=None):
|
|
parser = argparse.ArgumentParser(
|
|
description='Compute performance for a list of services provided in a json file or an excel sheet',
|
|
epilog=_help_footer,
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
_add_common_options(parser, network_default=_examples_dir / 'meshTopologyExampleV2.xls')
|
|
parser.add_argument('service_filename', nargs='?', type=Path, metavar='SERVICES-REQUESTS.(json|xls|xlsx)',
|
|
default=_examples_dir / 'meshTopologyExampleV2.xls',
|
|
help='Input service file')
|
|
parser.add_argument('-bi', '--bidir', action='store_true',
|
|
help='considers that all demands are bidir')
|
|
parser.add_argument('-o', '--output', type=Path, metavar=_help_fname_json_csv,
|
|
help='Store satisifed requests into a JSON or CSV file')
|
|
|
|
args = parser.parse_args(args if args is not None else sys.argv[1:])
|
|
_setup_logging(args)
|
|
|
|
_logger.info(f'Computing path requests {args.service_filename} into JSON format')
|
|
|
|
(equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign)
|
|
|
|
# Build the network once using the default power defined in SI in eqpt config
|
|
# TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by
|
|
# spacing, f_min and f_max
|
|
p_db = equipment['SI']['default'].power_dbm
|
|
|
|
p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min,
|
|
equipment['SI']['default'].f_max, equipment['SI']['default'].spacing))
|
|
try:
|
|
build_network(network, equipment, p_db, p_total_db, args.no_insert_edfas)
|
|
except exceptions.NetworkTopologyError as e:
|
|
print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
except exceptions.ConfigurationError as e:
|
|
print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
if args.save_network is not None:
|
|
save_network(network, args.save_network)
|
|
print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}')
|
|
oms_list = build_oms_list(network, equipment)
|
|
|
|
try:
|
|
data = load_requests(args.service_filename, equipment, bidir=args.bidir,
|
|
network=network, network_filename=args.topology)
|
|
rqs = requests_from_json(data, equipment)
|
|
except exceptions.ServiceError as e:
|
|
print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}')
|
|
sys.exit(1)
|
|
# check that request ids are unique. Non unique ids, may
|
|
# mess the computation: better to stop the computation
|
|
all_ids = [r.request_id for r in rqs]
|
|
if len(all_ids) != len(set(all_ids)):
|
|
for item in list(set(all_ids)):
|
|
all_ids.remove(item)
|
|
msg = f'Requests id {all_ids} are not unique'
|
|
_logger.critical(msg)
|
|
sys.exit()
|
|
rqs = correct_json_route_list(network, rqs)
|
|
|
|
# pths = compute_path(network, equipment, rqs)
|
|
dsjn = disjunctions_from_json(data)
|
|
|
|
print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}')
|
|
print(dsjn)
|
|
# need to warn or correct in case of wrong disjunction form
|
|
# disjunction must not be repeated with same or different ids
|
|
dsjn = deduplicate_disjunctions(dsjn)
|
|
|
|
# Aggregate demands with same exact constraints
|
|
print(f'{ansi_escapes.blue}Aggregating similar requests{ansi_escapes.reset}')
|
|
|
|
rqs, dsjn = requests_aggregation(rqs, dsjn)
|
|
# TODO export novel set of aggregated demands in a json file
|
|
|
|
print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}')
|
|
print(rqs)
|
|
|
|
print(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}')
|
|
try:
|
|
pths = compute_path_dsjctn(network, equipment, rqs, dsjn)
|
|
except exceptions.DisjunctionError as this_e:
|
|
print(f'{ansi_escapes.red}Disjunction error:{ansi_escapes.reset} {this_e}')
|
|
sys.exit(1)
|
|
|
|
print(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}')
|
|
propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths)
|
|
# Note that deepcopy used in compute_path_with_disjunction returns
|
|
# a list of nodes which are not belonging to network (they are copies of the node objects).
|
|
# so there can not be propagation on these nodes.
|
|
|
|
pth_assign_spectrum(pths, rqs, oms_list, reversed_pths)
|
|
|
|
print(f'{ansi_escapes.blue}Result summary{ansi_escapes.reset}')
|
|
header = ['req id', ' demand', ' GSNR@bandwidth A-Z (Z-A)', ' GSNR@0.1nm A-Z (Z-A)',
|
|
' Receiver minOSNR', ' mode', ' Gbit/s', ' nb of tsp pairs',
|
|
'N,M or blocking reason']
|
|
data = []
|
|
data.append(header)
|
|
for i, this_p in enumerate(propagatedpths):
|
|
rev_pth = reversed_propagatedpths[i]
|
|
if rev_pth and this_p:
|
|
psnrb = f'{round(mean(this_p[-1].snr),2)} ({round(mean(rev_pth[-1].snr),2)})'
|
|
psnr = f'{round(mean(this_p[-1].snr_01nm), 2)}' +\
|
|
f' ({round(mean(rev_pth[-1].snr_01nm),2)})'
|
|
elif this_p:
|
|
psnrb = f'{round(mean(this_p[-1].snr),2)}'
|
|
psnr = f'{round(mean(this_p[-1].snr_01nm),2)}'
|
|
|
|
try:
|
|
if rqs[i].blocking_reason in BLOCKING_NOPATH:
|
|
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} :',
|
|
f'-', f'-', f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
|
|
f'-', f'{rqs[i].blocking_reason}']
|
|
else:
|
|
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
|
|
psnr, f'-', f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9, 2)}',
|
|
f'-', f'{rqs[i].blocking_reason}']
|
|
except AttributeError:
|
|
line = [f'{rqs[i].request_id}', f' {rqs[i].source} to {rqs[i].destination} : ', psnrb,
|
|
psnr, f'{rqs[i].OSNR + equipment["SI"]["default"].sys_margins}',
|
|
f'{rqs[i].tsp_mode}', f'{round(rqs[i].path_bandwidth * 1e-9,2)}',
|
|
f'{ceil(rqs[i].path_bandwidth / rqs[i].bit_rate) }', f'({rqs[i].N},{rqs[i].M})']
|
|
data.append(line)
|
|
|
|
col_width = max(len(word) for row in data for word in row[2:]) # padding
|
|
firstcol_width = max(len(row[0]) for row in data) # padding
|
|
secondcol_width = max(len(row[1]) for row in data) # padding
|
|
for row in data:
|
|
firstcol = ''.join(row[0].ljust(firstcol_width))
|
|
secondcol = ''.join(row[1].ljust(secondcol_width))
|
|
remainingcols = ''.join(word.center(col_width, ' ') for word in row[2:])
|
|
print(f'{firstcol} {secondcol} {remainingcols}')
|
|
print(f'{ansi_escapes.yellow}Result summary shows mean GSNR and OSNR (average over all channels){ansi_escapes.reset}')
|
|
|
|
if args.output:
|
|
result = []
|
|
# assumes that list of rqs and list of propgatedpths have same order
|
|
for i, pth in enumerate(propagatedpths):
|
|
result.append(ResultElement(rqs[i], pth, reversed_propagatedpths[i]))
|
|
temp = _path_result_json(result)
|
|
if args.output.suffix.lower() == '.json':
|
|
save_json(temp, args.output)
|
|
print(f'{ansi_escapes.blue}Saved JSON to {args.output}{ansi_escapes.reset}')
|
|
elif args.output.suffix.lower() == '.csv':
|
|
with open(args.output, "w", encoding='utf-8') as fcsv:
|
|
jsontocsv(temp, equipment, fcsv)
|
|
print(f'{ansi_escapes.blue}Saved CSV to {args.output}{ansi_escapes.reset}')
|
|
else:
|
|
print(f'{ansi_escapes.red}Cannot save output: neither JSON nor CSV file{ansi_escapes.reset}')
|
|
sys.exit(1)
|