Files
oopt-gnpy/tests/test_propagation.py
EstherLerouzic 56e615c713 Feat: Use a reference channel per OMS instead of total power for design
Correctly uses the oms band and spacing for computing the nb of channel
and total power for design per band.
In order to keep the SI values as reference, introduce a new parameter
in SI to indicate wether to use this feature or not.

If "use_si_channel_count_for_design": true, then the f_min, f_max and spacing
from SI are used for all OMSes
else, the f_min, f_max, spacing defined per OMS (design_bands) is used.

This impacts tests where the artificial C-band boudaries were hardcoded, and
it also has an impact on performances when SI's defined nb of channels is larger
than the one defined per OMS. In this case the design was considering a larger
total power than the one finally propagated which resulted in reduced performance.
This feature now corrects this case (if "use_si_channel_count_for_design": false
which is the default setting). Overall autodesign are thus improved.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I471a2c45200894ca354c90b46b662f42414b48ad

tous les test marche et les jeu de tests aussi.

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: If25b47aa10f97301fde7f17daa2a9478aed46db2
2025-09-03 10:34:15 +02:00

243 lines
8.7 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# test_propagation
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
Check that propagation example give expected results
"""
import pytest
from pathlib import Path
from networkx import dijkstra_path
from numpy import mean, sqrt, ones
import re
from gnpy.core.exceptions import SpectrumError
from gnpy.core.elements import Transceiver, Fiber, Edfa, Roadm
from gnpy.core.utils import db2lin, dbm2watt
from gnpy.core.info import create_input_spectral_information
from gnpy.core.network import build_network
from gnpy.tools.json_io import load_network, load_equipment, network_from_json
from gnpy.topology.request import PathRequest
TEST_DIR = Path(__file__).parent
DATA_DIR = TEST_DIR / 'data'
network_file_name = DATA_DIR / 'LinkforTest.json'
eqpt_library_name = DATA_DIR / 'eqpt_config.json'
EXTRA_CONFIGS = {"std_medium_gain_advanced_config.json": DATA_DIR / "std_medium_gain_advanced_config.json",
"Juniper-BoosterHG.json": DATA_DIR / "Juniper-BoosterHG.json"}
@pytest.fixture(params=[(96, 0.05e12), (60, 0.075e12), (45, 0.1e12), (2, 0.1e12)],
ids=['50GHz spacing', '75GHz spacing', '100GHz spacing', '2 channels'])
# TODO in elements.py code: pytests doesn't pass with 1 channel: interpolate fail
def nch_and_spacing(request):
"""parametrize channel count vs channel spacing (Hz)"""
yield request.param
def pathrequest(pch_dbm, p_tot_dbm):
"""create ref channel for defined power settings
"""
params = {
"power": dbm2watt(pch_dbm),
"tx_power": dbm2watt(pch_dbm),
"nb_channel": round(dbm2watt(p_tot_dbm) / dbm2watt(pch_dbm), 0),
'request_id': None,
'trx_type': None,
'trx_mode': None,
'source': None,
'destination': None,
'bidir': False,
'nodes_list': [],
'loose_list': [],
'format': '',
'baud_rate': None,
'bit_rate': None,
'roll_off': None,
'OSNR': None,
'penalties': None,
'path_bandwidth': None,
'effective_freq_slot': None,
'f_min': None,
'f_max': None,
'spacing': None,
'min_spacing': None,
'cost': None,
'equalization_offset_db': None,
'tx_osnr': None
}
return PathRequest(**params)
def propagation(input_power, con_in, con_out, dest):
equipment = load_equipment(eqpt_library_name, EXTRA_CONFIGS)
network = load_network(network_file_name, equipment)
# parametrize the network elements with the con losses and adapt gain
# (assumes all spans are identical)
for e in network.nodes():
if isinstance(e, Fiber):
loss = e.params.loss_coef * e.params.length
e.params.con_in = con_in
e.params.con_out = con_out
if isinstance(e, Edfa):
e.operational.gain_target = loss + con_in + con_out
build_network(network, equipment, pathrequest(0, 20))
transceivers = {n.uid: n for n in network.nodes() if isinstance(n, Transceiver)}
p = input_power
p = db2lin(p) * 1e-3
spacing = 50e9 # THz
si = create_input_spectral_information(f_min=191.3e12, f_max=191.3e12 + 79 * spacing, roll_off=0.15,
baud_rate=32e9, spacing=spacing, tx_osnr=None,
tx_power=p)
source = next(transceivers[uid] for uid in transceivers if uid == 'trx A')
sink = next(transceivers[uid] for uid in transceivers if uid == dest)
path = dijkstra_path(network, source, sink)
for el in path:
si = el(si)
print(el) # remove this line when sweeping across several powers
edfa_sample = next(el for el in path if isinstance(el, Edfa))
nf = mean(edfa_sample.nf)
print(f'pw: {input_power} conn in: {con_in} con out: {con_out}',
f'OSNR@0.1nm: {round(mean(sink.osnr_ase_01nm),2)}',
f'SNR@bandwitdth: {round(mean(sink.snr),2)}')
return sink, nf, path
test = {'a': (-1, 1, 0), 'b': (-1, 1, 1), 'c': (0, 1, 0), 'd': (1, 1, 1)}
expected = {'a': (-2, 0, 0), 'b': (-2, 0, 1), 'c': (-1, 0, 0), 'd': (0, 0, 1)}
@pytest.mark.parametrize("dest", ['trx B', 'trx F'])
@pytest.mark.parametrize("osnr_test", ['a', 'b', 'c', 'd'])
def test_snr(osnr_test, dest):
pw = test[osnr_test][0]
conn_in = test[osnr_test][1]
conn_out = test[osnr_test][2]
sink, nf, _ = propagation(pw, conn_in, conn_out, dest)
osnr = round(mean(sink.osnr_ase), 3)
nli = 1.0 / db2lin(round(mean(sink.snr), 3)) - 1.0 / db2lin(osnr)
pw = expected[osnr_test][0]
conn_in = expected[osnr_test][1]
conn_out = expected[osnr_test][2]
sink, exp_nf, _ = propagation(pw, conn_in, conn_out, dest)
expected_osnr = round(mean(sink.osnr_ase), 3)
expected_nli = 1.0 / db2lin(round(mean(sink.snr), 3)) - 1.0 / db2lin(expected_osnr)
# compare OSNR taking into account nf change of amps
osnr_diff = abs(osnr - expected_osnr + nf - exp_nf)
nli_diff = abs((nli - expected_nli) / nli)
assert osnr_diff < 0.01 and nli_diff < 0.01
@pytest.mark.parametrize("dest", ['trx B', 'trx F'])
@pytest.mark.parametrize("cd_test", ['a', 'b', 'c', 'd'])
def test_chromatic_dispersion(cd_test, dest):
pw = test[cd_test][0]
conn_in = test[cd_test][1]
conn_out = test[cd_test][2]
sink, _, path = propagation(pw, conn_in, conn_out, dest)
chromatic_dispersion = sink.chromatic_dispersion
num_ch = len(chromatic_dispersion)
expected_cd = 0
for el in path:
expected_cd += el.params.dispersion * el.params.length if isinstance(el, Fiber) else 0
expected_cd = expected_cd * ones(num_ch) * 1e3
assert chromatic_dispersion == pytest.approx(expected_cd)
@pytest.mark.parametrize("dest", ['trx B', 'trx F'])
@pytest.mark.parametrize("dgd_test", ['a', 'b', 'c', 'd'])
def test_dgd(dgd_test, dest):
pw = test[dgd_test][0]
conn_in = test[dgd_test][1]
conn_out = test[dgd_test][2]
sink, _, path = propagation(pw, conn_in, conn_out, dest)
pmd = sink.pmd
num_ch = len(pmd)
expected_pmd = 0
for el in path:
expected_pmd += el.params.pmd_coef**2 * el.params.length if isinstance(el, Fiber) else 0
expected_pmd += el.params.pmd**2 if isinstance(el, Roadm) else 0
expected_pmd = sqrt(expected_pmd) * ones(num_ch) * 1e12
assert pmd == pytest.approx(expected_pmd)
def wrong_element_propagate():
"""
"""
data = []
data.append({
"error": SpectrumError,
"json_data": {
"elements": [{
"uid": "Elem",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"dispersion_per_frequency": {
"frequency": [
185.49234135667396e12,
186.05251641137855e12,
188.01312910284463e12,
189.99124726477024e12],
"value": [
1.60e-05,
1.67e-05,
1.7e-05,
1.8e-05]
},
"length": 1.02,
"loss_coef": 2.85,
"length_units": "km",
"att_in": 0.0,
"con_in": 0.0,
"con_out": 0.0
}
}],
"connections": []
},
"expected_msg": 'The spectrum bandwidth exceeds the frequency interval used to define the fiber Chromatic '
+ 'Dispersion in "Fiber Elem".\nSpectrum f_min-f_max: 191.35-196.1\nChromatic Dispersion '
+ 'f_min-f_max: 185.49-189.99'
})
return data
@pytest.mark.parametrize('error, json_data, expected_msg',
[(e['error'], e['json_data'], e['expected_msg']) for e in wrong_element_propagate()])
def test_json_element(error, json_data, expected_msg):
"""
Check that a missing key is correctly raisong the logger
"""
equipment = load_equipment(eqpt_library_name, EXTRA_CONFIGS)
network = network_from_json(json_data, equipment)
elem = next(e for e in network.nodes() if e.uid == 'Elem')
si = create_input_spectral_information(f_min=191.3e12, f_max=196.1e12, roll_off=0.15,
baud_rate=32e9, tx_power=1.0e-3, spacing=50.0e9, tx_osnr=45)
with pytest.raises(error, match=re.escape(expected_msg)):
_ = elem(si)
if __name__ == '__main__':
from logging import getLogger, basicConfig, INFO
logger = getLogger(__name__)
basicConfig(level=INFO)
for a in test:
test_snr(a, 'trx F')
print('\n')