Files
oopt-gnpy/gnpy/core/elements.py
Jonas Mårtensson 587932290d Calculate CD and PMD penalty
The penalties are calculated and presented separately from the GSNR.

They are also taken into account when optimizing trx mode and verifying
path feasibility in path_requests_run processing.

Penalties are specified in the eqpt_config file as part of trx modes.
This patch includes specifications for OpenROADM trx modes.

Penalties are defined by a list of
impairment_value/penalty_value pairs, for example:

"penalties": [
    {
        "chromatic_dispersion": 4e3,
        "penalty_value": 0
    },
    {
        "chromatic_dispersion": 18e3,
        "penalty_value": 0.5
    },
    {
        "pmd": 10,
        "penalty_value": 0
    },
    {
        "pmd": 30,
        "penalty_value": 0.5
    }
]

- Between given pairs, penalty is linearly interpolated.
- Below min and above max up_to_boundary, transmission is considered
  not feasible.

This is in line with how penalties are specified in OpenROADM and
compatible with specifications from most other organizations and
vendors.

The implementation makes it easy to add other penalties (PDL, etc.) in
the future.

The input format is flexible such that it can easily be extended to
accept combined penalty entries (e.g. CD and PMD) in the future.

Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
Change-Id: I3745eba48ca60c0e4c904839a99b59104eae9216
2022-01-18 12:35:59 +01:00

959 lines
43 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.elements
==================
Standard network elements which propagate optical spectrum
A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
object and returns a copy with appropriate fields affected. This structure
represents spectral information that is "propogated" by this network element.
Network elements must have only a local "view" of the network and propogate
:class:`.info.SpectralInformation` using only this information. They should be independent and
self-contained.
Network elements MUST implement two attributes :py:attr:`uid` and :py:attr:`name` representing a
unique identifier and a printable name, and provide the :py:meth:`__call__` method taking a
:class:`SpectralInformation` as an input and returning another :class:`SpectralInformation`
instance as a result.
"""
from numpy import abs, array, divide, errstate, ones, interp, mean, pi, polyfit, polyval, sum, sqrt, log10, exp,\
asarray, full, squeeze, zeros, append, flip, outer
from scipy.constants import h, c
from scipy.interpolate import interp1d
from collections import namedtuple
from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
from gnpy.core.parameters import FiberParams, PumpParams
from gnpy.core.science_utils import NliSolver, RamanSolver
from gnpy.core.info import SpectralInformation
from gnpy.core.exceptions import NetworkTopologyError, SpectrumError
class Location(namedtuple('Location', 'latitude longitude city region')):
def __new__(cls, latitude=0, longitude=0, city=None, region=None):
return super().__new__(cls, latitude, longitude, city, region)
class _Node:
'''Convenience class for providing common functionality of all network elements
This class is just an internal implementation detail; do **not** assume that all network elements
inherit from :class:`_Node`.
'''
def __init__(self, uid, name=None, params=None, metadata=None, operational=None, type_variety=None):
if name is None:
name = uid
self.uid, self.name = uid, name
if metadata is None:
metadata = {'location': {}}
if metadata and not isinstance(metadata.get('location'), Location):
metadata['location'] = Location(**metadata.pop('location', {}))
self.params, self.metadata, self.operational = params, metadata, operational
if type_variety:
self.type_variety = type_variety
@property
def location(self):
return self.metadata['location']
loc = location
@property
def longitude(self):
return self.location.longitude
lng = longitude
@property
def latitude(self):
return self.location.latitude
lat = latitude
class Transceiver(_Node):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.osnr_ase_01nm = None
self.osnr_ase = None
self.osnr_nli = None
self.snr = None
self.passive = False
self.baud_rate = None
self.chromatic_dispersion = None
self.pmd = None
self.penalties = {}
self.total_penalty = 0
def _calc_cd(self, spectral_info):
""" Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
"""
self.chromatic_dispersion = [carrier.chromatic_dispersion * 1e3 for carrier in spectral_info.carriers]
def _calc_pmd(self, spectral_info):
"""Updates the Transceiver property with the PMD of the received channels. PMD in ps.
"""
self.pmd = [carrier.pmd*1e12 for carrier in spectral_info.carriers]
def _calc_penalty(self, impairment_value, boundary_list):
return interp(impairment_value, boundary_list['up_to_boundary'], boundary_list['penalty_value'],
left=float('inf'), right=float('inf'))
def calc_penalties(self, penalties):
"""Updates the Transceiver property with penalties (CD, PMD, etc.) of the received channels in dB.
Penalties are linearly interpolated between given points and set to 'inf' outside interval.
"""
self.penalties = {impairment: self._calc_penalty(getattr(self, impairment), boundary_list)
for impairment, boundary_list in penalties.items()}
self.total_penalty = sum(list(self.penalties.values()), axis=0)
def _calc_snr(self, spectral_info):
with errstate(divide='ignore'):
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
ratio_01nm = [lin2db(12.5e9 / b_rate) for b_rate in self.baud_rate]
# set raw values to record original calculation, before update_snr()
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
for c in spectral_info.carriers]
self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
in zip(self.raw_osnr_ase, ratio_01nm)]
self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
for c in spectral_info.carriers]
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli + c.power.ase))
for c in spectral_info.carriers]
self.raw_snr_01nm = [snr - ratio for snr, ratio
in zip(self.raw_snr, ratio_01nm)]
self.osnr_ase = self.raw_osnr_ase
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
self.osnr_nli = self.raw_osnr_nli
self.snr = self.raw_snr
self.snr_01nm = self.raw_snr_01nm
def update_snr(self, *args):
"""
snr_added in 0.1nm
compute SNR penalties such as transponder Tx_osnr or Roadm add_drop_osnr
only applied in request.py / propagate on the last Trasceiver node of the path
all penalties are added in a single call because to avoid uncontrolled cumul
"""
# use raw_values so that the added SNR penalties are not cumulated
snr_added = 0
for s in args:
snr_added += db2lin(-s)
snr_added = -lin2db(snr_added)
self.osnr_ase = list(map(lambda x, y: snr_sum(x, y, snr_added),
self.raw_osnr_ase, self.baud_rate))
self.snr = list(map(lambda x, y: snr_sum(x, y, snr_added),
self.raw_snr, self.baud_rate))
self.osnr_ase_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
self.raw_osnr_ase_01nm))
self.snr_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
self.raw_snr_01nm))
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return (f'{type(self).__name__}('
f'uid={self.uid!r}, '
f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
f'osnr_ase={self.osnr_ase!r}, '
f'osnr_nli={self.osnr_nli!r}, '
f'snr={self.snr!r}, '
f'chromatic_dispersion={self.chromatic_dispersion!r}, '
f'pmd={self.pmd!r}, '
f'penalties={self.penalties!r})')
def __str__(self):
if self.snr is None or self.osnr_ase is None:
return f'{type(self).__name__} {self.uid}'
snr = round(mean(self.snr), 2)
osnr_ase = round(mean(self.osnr_ase), 2)
osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
snr_01nm = round(mean(self.snr_01nm), 2)
cd = mean(self.chromatic_dispersion)
pmd = mean(self.pmd)
result = '\n'.join([f'{type(self).__name__} {self.uid}',
f' GSNR (0.1nm, dB): {snr_01nm:.2f}',
f' GSNR (signal bw, dB): {snr:.2f}',
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
f' CD (ps/nm): {cd:.2f}',
f' PMD (ps): {pmd:.2f}'])
cd_penalty = self.penalties.get('chromatic_dispersion')
if cd_penalty is not None:
result += f'\n CD penalty (dB): {mean(cd_penalty):.2f}'
pmd_penalty = self.penalties.get('pmd')
if pmd_penalty is not None:
result += f'\n PMD penalty (dB): {mean(pmd_penalty):.2f}'
return result
def __call__(self, spectral_info):
self._calc_snr(spectral_info)
self._calc_cd(spectral_info)
self._calc_pmd(spectral_info)
return spectral_info
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr pmd restrictions per_degree_pch_out_db')
class Roadm(_Node):
def __init__(self, *args, params, **kwargs):
if 'per_degree_pch_out_db' not in params.keys():
params['per_degree_pch_out_db'] = {}
super().__init__(*args, params=RoadmParams(**params), **kwargs)
self.loss = 0 # auto-design interest
self.effective_loss = None
self.effective_pch_out_db = self.params.target_pch_out_db
self.passive = True
self.restrictions = self.params.restrictions
self.per_degree_pch_out_db = self.params.per_degree_pch_out_db
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'params': {
'target_pch_out_db': self.effective_pch_out_db,
'restrictions': self.restrictions,
'per_degree_pch_out_db': self.per_degree_pch_out_db
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
def __str__(self):
if self.effective_loss is None:
return f'{type(self).__name__} {self.uid}'
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' effective loss (dB): {self.effective_loss:.2f}',
f' pch out (dBm): {self.effective_pch_out_db:.2f}'])
def propagate(self, pref, *carriers, degree):
# pin_target and loss are read from eqpt_config.json['Roadm']
# all ingress channels in xpress are set to this power level
# but add channels are not, so we define an effective loss
# in the case of add channels
# find the target power on this degree:
# if a target power has been defined for this degree use it else use the global one.
# if the input power is lower than the target one, use the input power instead because
# a ROADM doesn't amplify, it can only attenuate
# TODO maybe add a minimum loss for the ROADM
per_degree_pch = self.per_degree_pch_out_db[degree] if degree in self.per_degree_pch_out_db.keys() else self.params.target_pch_out_db
self.effective_pch_out_db = min(pref.p_spani, per_degree_pch)
self.effective_loss = pref.p_spani - self.effective_pch_out_db
carriers_power = array([c.power.signal + c.power.nli + c.power.ase for c in carriers])
carriers_att = list(map(lambda x: lin2db(x * 1e3) - per_degree_pch, carriers_power))
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default=0)
carriers_att = list(map(lambda x: db2lin(x + exceeding_att), carriers_att))
for carrier_att, carrier in zip(carriers_att, carriers):
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / carrier_att,
nli=pwr.nli / carrier_att,
ase=pwr.ase / carrier_att)
pmd = sqrt(carrier.pmd**2 + self.params.pmd**2)
yield carrier._replace(power=pwr, pmd=pmd)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
def __call__(self, spectral_info, degree):
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers, degree=degree))
pref = self.update_pref(spectral_info.pref)
return spectral_info._replace(carriers=carriers, pref=pref)
FusedParams = namedtuple('FusedParams', 'loss')
class Fused(_Node):
def __init__(self, *args, params=None, **kwargs):
if params is None:
# default loss value if not mentioned in loaded network json
params = {'loss': 1}
super().__init__(*args, params=FusedParams(**params), **kwargs)
self.loss = self.params.loss
self.passive = True
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'params': {
'loss': self.loss
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
def __str__(self):
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' loss (dB): {self.loss:.2f}'])
def propagate(self, *carriers):
attenuation = db2lin(self.loss)
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / attenuation,
nli=pwr.nli / attenuation,
ase=pwr.ase / attenuation)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info._replace(carriers=carriers, pref=pref)
class Fiber(_Node):
def __init__(self, *args, params=None, **kwargs):
if not params:
params = {}
super().__init__(*args, params=FiberParams(**params), **kwargs)
self.pch_out_db = None
self.passive = True
# Raman efficiency matrix function of the delta frequency constructed such that each row is related to a
# fixed frequency: positive elements represent a gain (from higher frequency) and negative elements represent
# a loss (to lower frequency)
if self.params.raman_efficiency:
frequency_offset = self.params.raman_efficiency['frequency_offset']
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
cr = self.params.raman_efficiency['cr']
cr = append(- flip(cr[1:]), cr)
self._cr_function = lambda frequency: interp(frequency, frequency_offset, cr)
else:
self._cr_function = lambda frequency: zeros(squeeze(frequency).shape)
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'type_variety': self.type_variety,
'params': {
# have to specify each because namedtupple cannot be updated :(
'length': round(self.params.length * 1e-3, 6),
'loss_coef': round(self.params.loss_coef * 1e3, 6),
'length_units': 'km',
'att_in': self.params.att_in,
'con_in': self.params.con_in,
'con_out': self.params.con_out
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, ' \
f'length={round(self.params.length * 1e-3,1)!r}km, ' \
f'loss={round(self.loss,1)!r}dB)'
def __str__(self):
if self.pch_out_db is None:
return f'{type(self).__name__} {self.uid}'
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' type_variety: {self.type_variety}',
f' length (km): {self.params.length * 1e-3:.2f}',
f' pad att_in (dB): {self.params.att_in:.2f}',
f' total loss (dB): {self.loss:.2f}',
f' (includes conn loss (dB) in: {self.params.con_in:.2f} out: {self.params.con_out:.2f})',
f' (conn loss out includes EOL margin defined in eqpt_config.json)',
f' pch out (dBm): {self.pch_out_db:.2f}'])
def loss_coef_func(self, frequency):
frequency = asarray(frequency)
if self.params.loss_coef.size > 1:
try:
loss_coef = interp1d(self.params.f_loss_ref, self.params.loss_coef)(frequency)
except ValueError:
raise SpectrumError('The spectrum bandwidth exceeds the frequency interval used to define the fiber '
f'loss coefficient in "{type(self).__name__} {self.uid}".'
f'\nSpectrum f_min-f_max: {round(frequency[0]*1e-12,2)}-'
f'{round(frequency[-1]*1e-12,2)}'
f'\nLoss coefficient f_min-f_max: {round(self.params.f_loss_ref[0]*1e-12,2)}-'
f'{round(self.params.f_loss_ref[-1]*1e-12,2)}')
else:
loss_coef = full(frequency.size, self.params.loss_coef)
return squeeze(loss_coef)
@property
def loss(self):
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
return self.loss_coef_func(self.params.ref_frequency) * self.params.length + \
self.params.con_in + self.params.con_out + self.params.att_in
def alpha(self, frequency):
"""Returns the linear exponent attenuation coefficient such that
:math: `lin_attenuation = e^{- alpha length}`
:param frequency: the frequency at which alpha is computed [Hz]
:return: alpha: power attenuation coefficient for f in frequency [Neper/m]
"""
return self.loss_coef_func(frequency) / (10 * log10(exp(1)))
def cr(self, frequency):
"""Returns the raman efficiency matrix including the vibrational loss
:param frequency: the frequency at which cr is computed [Hz]
:return: cr: raman efficiency matrix [1 / (W m)]
"""
df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
cr = self._cr_function(df)
vibrational_loss = outer(frequency, ones(frequency.shape)) / outer(ones(frequency.shape), frequency)
return cr * (cr >= 0) + cr * (cr < 0) * vibrational_loss # Raman efficiency [1/(W m)]
def chromatic_dispersion(self, freq=None):
"""Returns accumulated chromatic dispersion (CD).
:param freq: the frequency at which the chromatic dispersion is computed
:return: chromatic dispersion: the accumulated dispersion [s/m]
"""
freq = self.params.ref_frequency if freq is None else freq
beta2 = self.params.beta2
beta3 = self.params.beta3
ref_f = self.params.ref_frequency
length = self.params.length
beta = beta2 + 2 * pi * beta3 * (freq - ref_f)
dispersion = -beta * 2 * pi * ref_f**2 / c
return dispersion * length
@property
def pmd(self):
"""differential group delay (PMD) [s]"""
return self.params.pmd_coef * sqrt(self.params.length)
def propagate(self, spectral_info: SpectralInformation):
"""Modifies the spectral information computing the attenuation, the non-linear interference generation,
the CD and PMD accumulation.
"""
# apply the attenuation due to the input connector loss
attenuation_in_db = self.params.con_in + self.params.att_in
spectral_info.apply_attenuation_db(attenuation_in_db)
# inter channels Raman effect
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, self)
# NLI noise evaluated at the fiber input
spectral_info.nli += NliSolver.compute_nli(spectral_info, stimulated_raman_scattering, self)
# chromatic dispersion and pmd variations
spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
# apply the attenuation due to the fiber losses
attenuation_fiber = stimulated_raman_scattering.loss_profile[:, -1]
spectral_info.apply_attenuation_lin(attenuation_fiber)
# apply the attenuation due to the output connector loss
attenuation_out_db = self.params.con_out
spectral_info.apply_attenuation_db(attenuation_out_db)
def update_pref(self, spectral_info):
# in case of Raman, the resulting loss of the fiber is not equivalent to self.loss
# because of Raman gain. In order to correctly update pref, we need the resulting loss:
# power_out - power_in. We use the total signal power (sum on all channels) to compute
# this loss, because pref is a noiseless reference.
loss = round(lin2db(self._psig_in / sum(spectral_info.signal)), 2)
self.pch_out_db = spectral_info.pref.p_spani - loss
spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
p_spani=self.pch_out_db)
def __call__(self, spectral_info):
# _psig_in records the total signal power of the spectral information before propagation.
self._psig_in = sum(spectral_info.signal)
self.propagate(spectral_info)
self.update_pref(spectral_info)
return spectral_info
class RamanFiber(Fiber):
def __init__(self, *args, params=None, **kwargs):
super().__init__(*args, params=params, **kwargs)
if not self.operational:
raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
'defined as RamanFiber without operational parameters')
if 'raman_pumps' not in self.operational:
raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
'defined as RamanFiber without raman pumps description in operational')
if 'temperature' not in self.operational:
raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
'defined as RamanFiber without temperature in operational')
pump_loss = db2lin(self.params.con_out)
self.raman_pumps = tuple(PumpParams(p['power'] / pump_loss, p['frequency'], p['propagation_direction'])
for p in self.operational['raman_pumps'])
self.temperature = self.operational['temperature']
def propagate(self, spectral_info: SpectralInformation):
"""Modifies the spectral information computing the attenuation, the non-linear interference generation,
the CD and PMD accumulation.
"""
# apply the attenuation due to the input connector loss
attenuation_in_db = self.params.con_in + self.params.att_in
spectral_info.apply_attenuation_db(attenuation_in_db)
# Raman pumps and inter channel Raman effect
stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, self)
spontaneous_raman_scattering = \
RamanSolver.calculate_spontaneous_raman_scattering(spectral_info, stimulated_raman_scattering, self)
# nli and ase noise evaluated at the fiber input
spectral_info.nli += NliSolver.compute_nli(spectral_info, stimulated_raman_scattering, self)
spectral_info.ase += spontaneous_raman_scattering
# chromatic dispersion and pmd variations
spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
# apply the attenuation due to the fiber losses
attenuation_fiber = stimulated_raman_scattering.loss_profile[:spectral_info.number_of_channels, -1]
spectral_info.apply_attenuation_lin(attenuation_fiber)
# apply the attenuation due to the output connector loss
attenuation_out_db = self.params.con_out
spectral_info.apply_attenuation_db(attenuation_out_db)
class EdfaParams:
def __init__(self, **params):
self.update_params(params)
if params == {}:
self.type_variety = ''
self.type_def = ''
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
def update_params(self, kwargs):
for k, v in kwargs.items():
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
class EdfaOperational:
default_values = {
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
}
def __init__(self, **operational):
self.update_attr(operational)
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
def __repr__(self):
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')
class Edfa(_Node):
def __init__(self, *args, params=None, operational=None, **kwargs):
if params is None:
params = {}
if operational is None:
operational = {}
self.variety_list = kwargs.pop('variety_list', None)
super().__init__(
*args,
params=EdfaParams(**params),
operational=EdfaOperational(**operational),
**kwargs
)
self.interpol_dgt = None # interpolated dynamic gain tilt
self.interpol_gain_ripple = None # gain ripple
self.interpol_nf_ripple = None # nf_ripple
self.channel_freq = None # SI channel frequencies
# nf, gprofile, pin and pout attributes are set by interpol_params
self.nf = None # dB edfa nf at operational.gain_target
self.gprofile = None
self.pin_db = None
self.nch = None
self.pout_db = None
self.target_pch_out_db = None
self.effective_pch_out_db = None
self.passive = False
self.att_in = None
self.effective_gain = self.operational.gain_target
self.delta_p = self.operational.delta_p # delta P with Pref (power swwep) in power mode
self.tilt_target = self.operational.tilt_target
self.out_voa = self.operational.out_voa
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'type_variety': self.params.type_variety,
'operational': {
'gain_target': round(self.effective_gain, 6),
'delta_p': self.delta_p,
'tilt_target': self.tilt_target,
'out_voa': self.out_voa
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return (f'{type(self).__name__}(uid={self.uid!r}, '
f'type_variety={self.params.type_variety!r}, '
f'interpol_dgt={self.interpol_dgt!r}, '
f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
f'channel_freq={self.channel_freq!r}, '
f'nf={self.nf!r}, '
f'gprofile={self.gprofile!r}, '
f'pin_db={self.pin_db!r}, '
f'pout_db={self.pout_db!r})')
def __str__(self):
if self.pin_db is None or self.pout_db is None:
return f'{type(self).__name__} {self.uid}'
nf = mean(self.nf)
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' type_variety: {self.params.type_variety}',
f' effective gain(dB): {self.effective_gain:.2f}',
f' (before att_in and before output VOA)',
f' noise figure (dB): {nf:.2f}',
f' (including att_in)',
f' pad att_in (dB): {self.att_in:.2f}',
f' Power In (dBm): {self.pin_db:.2f}',
f' Power Out (dBm): {self.pout_db:.2f}',
f' Delta_P (dB): ' + (f'{self.delta_p:.2f}' if self.delta_p is not None else 'None'),
f' target pch (dBm): ' + (f'{self.target_pch_out_db:.2f}' if self.target_pch_out_db is not None else 'None'),
f' effective pch (dBm): {self.effective_pch_out_db:.2f}',
f' output VOA (dB): {self.out_voa:.2f}'])
def interpol_params(self, frequencies, pin, baud_rates, pref):
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
"""
# TODO|jla: read amplifier actual frequencies from additional params in json
self.channel_freq = frequencies
amplifier_freq = arrange_frequencies(len(self.params.dgt), self.params.f_min, self.params.f_max) # Hz
self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
amplifier_freq = arrange_frequencies(len(self.params.gain_ripple), self.params.f_min, self.params.f_max) # Hz
self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
amplifier_freq = arrange_frequencies(len(self.params.nf_ripple), self.params.f_min, self.params.f_max) # Hz
self.interpol_nf_ripple = interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
self.nch = frequencies.size
self.pin_db = lin2db(sum(pin * 1e3))
# The following should be changed when we have the new spectral information including slot widths.
# For now, with homogeneous spectrum, we can calculate it as the difference between neighbouring channels.
self.slot_width = self.channel_freq[1] - self.channel_freq[0]
"""in power mode: delta_p is defined and can be used to calculate the power target
This power target is used calculate the amplifier gain"""
if self.delta_p is not None:
self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
self.effective_gain = self.target_pch_out_db - pref.p_spani
"""check power saturation and correct effective gain & power accordingly:"""
self.effective_gain = min(
self.effective_gain,
self.params.p_max - (pref.p_spani + pref.neq_ch)
)
#print(self.uid, self.effective_gain, self.operational.gain_target)
self.effective_pch_out_db = round(pref.p_spani + self.effective_gain, 2)
"""check power saturation and correct target_gain accordingly:"""
#print(self.uid, self.effective_gain, self.pin_db, pref.p_spani)
self.nf = self._calc_nf()
self.gprofile = self._gain_profile(pin)
pout = (pin + self.noise_profile(baud_rates)) * db2lin(self.gprofile)
self.pout_db = lin2db(sum(pout * 1e3))
# ase & nli are only calculated in signal bandwidth
# pout_db is not the absolute full output power (negligible if sufficient channels)
def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
# if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax
#gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
pad = max(gain_min - gain_target, 0)
gain_target += pad
dg = max(gain_flatmax - gain_target, 0)
if type_def == 'variable_gain':
g1a = gain_target - nf_model.delta_p - dg
nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2) / db2lin(g1a))
elif type_def == 'fixed_gain':
nf_avg = nf_model.nf0
elif type_def == 'openroadm':
# OpenROADM specifies OSNR vs. input power per channel for 50 GHz slot width so we
# scale it to 50 GHz based on actual slot width.
pin_ch_50GHz = self.pin_db - lin2db(self.nch) + lin2db(50e9 / self.slot_width)
# model OSNR = f(Pin per 50 GHz channel)
nf_avg = pin_ch_50GHz - polyval(nf_model.nf_coef, pin_ch_50GHz) + 58
elif type_def == 'openroadm_preamp':
# OpenROADM specifies OSNR vs. input power per channel for 50 GHz slot width so we
# scale it to 50 GHz based on actual slot width.
pin_ch_50GHz = self.pin_db - lin2db(self.nch) + lin2db(50e9 / self.slot_width)
# model OSNR = f(Pin per 50 GHz channel)
nf_avg = pin_ch_50GHz - min((4 * pin_ch_50GHz + 275) / 7, 33) + 58
elif type_def == 'openroadm_booster':
# model a zero-noise amp with "infinitely negative" (in dB) NF
nf_avg = float('-inf')
elif type_def == 'advanced_model':
nf_avg = polyval(nf_fit_coeff, -dg)
return nf_avg + pad, pad
def _calc_nf(self, avg=False):
"""nf calculation based on 2 models: self.params.nf_model.enabled from json import:
True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
False => polynomial fit based on self.params.nf_fit_coeff"""
# gain_min > gain_target TBD:
if self.params.type_def == 'dual_stage':
g1 = self.params.preamp_gain_flatmax
g2 = self.effective_gain - g1
nf1_avg, pad = self._nf(self.params.preamp_type_def,
self.params.preamp_nf_model,
self.params.preamp_nf_fit_coeff,
self.params.preamp_gain_min,
self.params.preamp_gain_flatmax,
g1)
# no padding expected for the 1stage because g1 = gain_max
nf2_avg, pad = self._nf(self.params.booster_type_def,
self.params.booster_nf_model,
self.params.booster_nf_fit_coeff,
self.params.booster_gain_min,
self.params.booster_gain_flatmax,
g2)
nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg - g1))
# no padding expected for the 1stage because g1 = gain_max
pad = 0
else:
nf_avg, pad = self._nf(self.params.type_def,
self.params.nf_model,
self.params.nf_fit_coeff,
self.params.gain_min,
self.params.gain_flatmax,
self.effective_gain)
self.att_in = pad # not used to attenuate carriers, only used in _repr_ and _str_
if avg:
return nf_avg
else:
return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
def noise_profile(self, df):
"""noise_profile(bw) computes amplifier ASE (W) in signal bandwidth (Hz)
Noise is calculated at amplifier input
:bw: signal bandwidth = baud rate in Hz
:type bw: float
:return: the asepower in W in the signal bandwidth bw for 96 channels
:return type: numpy array of float
ASE power using per channel gain profile inputs:
NF_dB - Noise figure in dB, vector of length number of channels or
spectral slices
G_dB - Actual gain calculated for the EDFA, vector of length number of
channels or spectral slices
ffs - Center frequency grid of the channels or spectral slices in
THz, vector of length number of channels or spectral slices
dF - width of each channel or spectral slice in THz,
vector of length number of channels or spectral slices
OUTPUT:
ase_dBm - ase in dBm per channel or spectral slice
NOTE:
The output is the total ASE in the channel or spectral slice. For
50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
in 0.1nm, subtract 6dB.
ONSR is usually quoted as channel power divided by
the ASE power in 0.1nm RBW, regardless of the width of the actual
channel. This is a historical convention from the days when optical
signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
resolution of the OSAs that were used to measure spectral power which
were set to 0.1nm resolution for convenience. Moving forward into
flexible grid and high baud rate signals, it may be convenient to begin
quoting power spectral density in the same BW for both signal and ASE,
e.g. 12.5GHz."""
ase = h * df * self.channel_freq * db2lin(self.nf) # W
return ase # in W at amplifier input
def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
"""
Pin : input power / channel in W
:param gain_ripple: design flat gain
:param dgt: design gain tilt
:param Pin: total input power in W
:param gp: Average gain setpoint in dB units (provisioned gain)
:param gtp: gain tilt setting (provisioned tilt)
:type gain_ripple: numpy.ndarray
:type dgt: numpy.ndarray
:type Pin: numpy.ndarray
:type gp: float
:type gtp: float
:return: gain profile in dBm, per channel or spectral slice
:rtype: numpy.ndarray
Checking of output power clamping is implemented in interpol_params().
Based on:
R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
gain tilt technique", Journal of Lightwave Technology, Vol. 18,
Iss. 3, Pp. 343-347, 2000.
Ported from Matlab version written by David Boerges at Ciena.
"""
# TODO|jla: check what param should be used (currently length(dgt))
if len(self.interpol_dgt) == 1:
return array([self.effective_gain])
# TODO|jla: find a way to use these or lose them. Primarily we should have
# a way to determine if exceeding the gain or output power of the amp
tot_in_power_db = self.pin_db # Pin in W
# linear fit to get the
p = polyfit(self.channel_freq, self.interpol_dgt, 1)
dgt_slope = p[0]
# Calculate the target slope
targ_slope = -self.tilt_target / (self.params.f_max - self.params.f_min)
# first estimate of DGT scaling
dgts1 = targ_slope / dgt_slope if dgt_slope != 0. else 0.
# when simple_opt is true, make 2 attempts to compute gain and
# the internal voa value. This is currently here to provide direct
# comparison with original Matlab code. Will be removed.
# TODO|jla: replace with loop
if not simple_opt:
return
# first estimate of Er gain & VOA loss
g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
+ array(self.interpol_dgt) * dgts1
voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
# second estimate of amp ch gain using the channel input profile
g2nd = g1st - voa
pout_db = lin2db(sum(pin * 1e3 * db2lin(g2nd)))
dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
# center estimate of amp ch gain
xcent = dgts2
gcent = g1st - voa + array(self.interpol_dgt) * xcent
pout_db = lin2db(sum(pin * 1e3 * db2lin(gcent)))
gavg_cent = pout_db - tot_in_power_db
# Lower estimate of amp ch gain
deltax = max(g1st) - min(g1st)
# if no ripple deltax = 0 and xlow = xcent: div 0
# TODO|jla: add check for flat gain response
if abs(deltax) <= 0.05: # not enough ripple to consider calculation
return g1st - voa
xlow = dgts2 - deltax
glow = g1st - voa + array(self.interpol_dgt) * xlow
pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
gavg_low = pout_db - tot_in_power_db
# upper gain estimate
xhigh = dgts2 + deltax
ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
gavg_high = pout_db - tot_in_power_db
# compute slope
slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
if abs(self.effective_gain - gavg_cent) <= err_tolerance:
dgts3 = xcent
elif self.effective_gain < gavg_cent:
dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
else:
dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
return g1st - voa + array(self.interpol_dgt) * dgts3
def propagate(self, pref, *carriers):
"""add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
pin = array([c.power.signal + c.power.nli + c.power.ase for c in carriers]) # pin in W
freq = array([c.frequency for c in carriers])
brate = array([c.baud_rate for c in carriers])
# interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
self.interpol_params(freq, pin, brate, pref)
gains = db2lin(self.gprofile)
carrier_ases = self.noise_profile(brate)
att = db2lin(self.out_voa)
for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal * gain / att,
nli=pwr.nli * gain / att,
ase=(pwr.ase + carrier_ase) * gain / att)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p_span0,
p_spani=pref.p_spani + self.effective_gain - self.out_voa)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info._replace(carriers=carriers, pref=pref)