mirror of
				https://github.com/Telecominfraproject/oopt-gnpy.git
				synced 2025-11-01 02:28:05 +00:00 
			
		
		
		
	 648039521e
			
		
	
	648039521e
	
	
	
		
			
			We agreed that `gnpy.core` should only contain stuff for propagating wavelengths. Conceptually, JSON parsing and even instantiating these network elements from data obtained through JSON is *not* something that is on the same level -- and this will become more important when we move into YANG format in future. Also, instead of former `gnpy.core.equipment.common`, use `gnpy.tools.json_io._JsonThing`. It is not really an awesome name :), but I think it sucks less than a thing called "common" which would be no really longer any "common" in that new file. Change-Id: Ifd85ea4423d418c14c8fae3d5054c5cb5638d283
		
			
				
	
	
		
			485 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			485 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| '''
 | |
| gnpy.core.network
 | |
| =================
 | |
| 
 | |
| Working with networks which consist of network elements
 | |
| '''
 | |
| 
 | |
| from scipy.interpolate import interp1d
 | |
| from operator import attrgetter
 | |
| from gnpy.core import ansi_escapes, elements
 | |
| from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
 | |
| from gnpy.core.utils import round2float, convert_length
 | |
| from collections import namedtuple
 | |
| 
 | |
| 
 | |
| def edfa_nf(gain_target, variety_type, equipment):
 | |
|     amp_params = equipment['Edfa'][variety_type]
 | |
|     amp = elements.Edfa(
 | |
|         uid='calc_NF',
 | |
|         params=amp_params.__dict__,
 | |
|         operational={
 | |
|             'gain_target': gain_target,
 | |
|             'tilt_target': 0
 | |
|         }
 | |
|     )
 | |
|     amp.pin_db = 0
 | |
|     amp.nch = 88
 | |
|     return amp._calc_nf(True)
 | |
| 
 | |
| 
 | |
| def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
 | |
|     """amplifer selection algorithm
 | |
|     @Orange Jean-Luc Augé
 | |
|     """
 | |
|     Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
 | |
|     TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
 | |
| 
 | |
|     # for roadm restriction only: create a dict including not allowed for design amps
 | |
|     # because main use case is to have specific radm amp which are not allowed for ILA
 | |
|     # with the auto design
 | |
|     edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
 | |
|                  if restrictions is None or name in restrictions}
 | |
| 
 | |
|     pin = power_target - gain_target
 | |
| 
 | |
|     # create 2 list of available amplifiers with relevant attributes for their selection
 | |
| 
 | |
|     # edfa list with:
 | |
|     # extended gain min allowance of 3dB: could be parametrized, but a bit complex
 | |
|     # extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
 | |
|     # power attribut include power AND gain limitations
 | |
|     edfa_list = [Edfa_list(
 | |
|         variety=edfa_variety,
 | |
|         power=min(
 | |
|             pin
 | |
|             + edfa.gain_flatmax
 | |
|             + TARGET_EXTENDED_GAIN,
 | |
|             edfa.p_max
 | |
|         )
 | |
|         - power_target,
 | |
|         gain_min=gain_target + 3
 | |
|         - edfa.gain_min,
 | |
|         nf=edfa_nf(gain_target, edfa_variety, equipment))
 | |
|         for edfa_variety, edfa in edfa_dict.items()
 | |
|         if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
 | |
| 
 | |
|     # consider a Raman list because of different gain_min requirement:
 | |
|     # do not allow extended gain min for Raman
 | |
|     raman_list = [Edfa_list(
 | |
|         variety=edfa_variety,
 | |
|         power=min(
 | |
|             pin
 | |
|             + edfa.gain_flatmax
 | |
|             + TARGET_EXTENDED_GAIN,
 | |
|             edfa.p_max
 | |
|         )
 | |
|         - power_target,
 | |
|         gain_min=gain_target
 | |
|         - edfa.gain_min,
 | |
|         nf=edfa_nf(gain_target, edfa_variety, equipment))
 | |
|         for edfa_variety, edfa in edfa_dict.items()
 | |
|         if (edfa.allowed_for_design and edfa.raman)] \
 | |
|         if raman_allowed else []
 | |
| 
 | |
|     # merge raman and edfa lists
 | |
|     amp_list = edfa_list + raman_list
 | |
| 
 | |
|     # filter on min gain limitation:
 | |
|     acceptable_gain_min_list = [x for x in amp_list if x.gain_min > 0]
 | |
| 
 | |
|     if len(acceptable_gain_min_list) < 1:
 | |
|         # do not take this empty list into account for the rest of the code
 | |
|         # but issue a warning to the user and do not consider Raman
 | |
|         # Raman below min gain should not be allowed because i is meant to be a design requirement
 | |
|         # and raman padding at the amplifier input is impossible!
 | |
| 
 | |
|         if len(edfa_list) < 1:
 | |
|             raise ConfigurationError(f'auto_design could not find any amplifier \
 | |
|                     to satisfy min gain requirement in node {uid} \
 | |
|                     please increase span fiber padding')
 | |
|         else:
 | |
|             # TODO: convert to logging
 | |
|             print(
 | |
|                 f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain in node {uid} is below all available amplifiers min gain: \
 | |
|                   amplifier input padding will be assumed, consider increase span fiber padding instead'
 | |
|             )
 | |
|             acceptable_gain_min_list = edfa_list
 | |
| 
 | |
|     # filter on gain+power limitation:
 | |
|     # this list checks both the gain and the power requirement
 | |
|     # because of the way .power is calculated in the list
 | |
|     acceptable_power_list = [x for x in acceptable_gain_min_list if x.power > 0]
 | |
|     if len(acceptable_power_list) < 1:
 | |
|         # no amplifier satisfies the required power, so pick the highest power(s):
 | |
|         power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
 | |
|         # check and pick if other amplifiers may have a similar gain/power
 | |
|         # allow a 0.3dB power range
 | |
|         # this allows to chose an amplifier with a better NF subsequentely
 | |
|         acceptable_power_list = [x for x in acceptable_gain_min_list
 | |
|                                  if x.power - power_max > -0.3]
 | |
| 
 | |
|     # gain and power requirements are resolved,
 | |
|     #       =>chose the amp with the best NF among the acceptable ones:
 | |
|     selected_edfa = min(acceptable_power_list, key=attrgetter('nf'))  # filter on NF
 | |
|     # check what are the gain and power limitations of this amp
 | |
|     power_reduction = round(min(selected_edfa.power, 0), 2)
 | |
|     if power_reduction < -0.5:
 | |
|         print(
 | |
|             f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain and power in node {uid}\n \
 | |
|     is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
 | |
|     a power reduction of {power_reduction} is applied\n'
 | |
|         )
 | |
| 
 | |
|     return selected_edfa.variety, power_reduction
 | |
| 
 | |
| 
 | |
| def target_power(network, node, equipment):  # get_fiber_dp
 | |
|     SPAN_LOSS_REF = 20
 | |
|     POWER_SLOPE = 0.3
 | |
|     dp_range = list(equipment['Span']['default'].delta_power_range_db)
 | |
|     node_loss = span_loss(network, node)
 | |
| 
 | |
|     try:
 | |
|         dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
 | |
|         dp = max(dp_range[0], dp)
 | |
|         dp = min(dp_range[1], dp)
 | |
|     except KeyError:
 | |
|         raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
 | |
|                                  f'delta_power_range_db: [lower_bound, upper_bound, step]')
 | |
| 
 | |
|     if isinstance(node, elements.Roadm):
 | |
|         dp = 0
 | |
| 
 | |
|     return dp
 | |
| 
 | |
| 
 | |
| def prev_node_generator(network, node):
 | |
|     """fused spans interest:
 | |
|     iterate over all predecessors while they are Fused or Fiber type"""
 | |
|     try:
 | |
|         prev_node = next(n for n in network.predecessors(node))
 | |
|     except StopIteration:
 | |
|         raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
 | |
|     # yield and re-iterate
 | |
|     if isinstance(prev_node, elements.Fused) or isinstance(node, elements.Fused):
 | |
|         yield prev_node
 | |
|         yield from prev_node_generator(network, prev_node)
 | |
|     else:
 | |
|         StopIteration
 | |
| 
 | |
| 
 | |
| def next_node_generator(network, node):
 | |
|     """fused spans interest:
 | |
|     iterate over all successors while they are Fused or Fiber type"""
 | |
|     try:
 | |
|         next_node = next(n for n in network.successors(node))
 | |
|     except StopIteration:
 | |
|         raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
 | |
|     # yield and re-iterate
 | |
|     if isinstance(next_node, elements.Fused) or isinstance(node, elements.Fused):
 | |
|         yield next_node
 | |
|         yield from next_node_generator(network, next_node)
 | |
|     else:
 | |
|         StopIteration
 | |
| 
 | |
| 
 | |
| def span_loss(network, node):
 | |
|     """Fused span interest:
 | |
|     return the total span loss of all the fibers spliced by a Fused node"""
 | |
|     loss = node.loss if node.passive else 0
 | |
|     try:
 | |
|         prev_node = next(n for n in network.predecessors(node))
 | |
|         if isinstance(prev_node, elements.Fused):
 | |
|             loss += sum(n.loss for n in prev_node_generator(network, node))
 | |
|     except StopIteration:
 | |
|         pass
 | |
|     try:
 | |
|         next_node = next(n for n in network.successors(node))
 | |
|         if isinstance(next_node, elements.Fused):
 | |
|             loss += sum(n.loss for n in next_node_generator(network, node))
 | |
|     except StopIteration:
 | |
|         pass
 | |
|     return loss
 | |
| 
 | |
| 
 | |
| def find_first_node(network, node):
 | |
|     """Fused node interest:
 | |
|     returns the 1st node at the origin of a succession of fused nodes
 | |
|     (aka no amp in between)"""
 | |
|     this_node = node
 | |
|     for this_node in prev_node_generator(network, node):
 | |
|         pass
 | |
|     return this_node
 | |
| 
 | |
| 
 | |
| def find_last_node(network, node):
 | |
|     """Fused node interest:
 | |
|     returns the last node in a succession of fused nodes
 | |
|     (aka no amp in between)"""
 | |
|     this_node = node
 | |
|     for this_node in next_node_generator(network, node):
 | |
|         pass
 | |
|     return this_node
 | |
| 
 | |
| 
 | |
| def set_amplifier_voa(amp, power_target, power_mode):
 | |
|     VOA_MARGIN = 1  # do not maximize the VOA optimization
 | |
|     if amp.out_voa is None:
 | |
|         if power_mode:
 | |
|             voa = min(amp.params.p_max - power_target,
 | |
|                       amp.params.gain_flatmax - amp.effective_gain)
 | |
|             voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0
 | |
|             amp.delta_p = amp.delta_p + voa
 | |
|             amp.effective_gain = amp.effective_gain + voa
 | |
|         else:
 | |
|             voa = 0  # no output voa optimization in gain mode
 | |
|         amp.out_voa = voa
 | |
| 
 | |
| 
 | |
| def set_egress_amplifier(network, roadm, equipment, pref_total_db):
 | |
|     power_mode = equipment['Span']['default'].power_mode
 | |
|     next_oms = (n for n in network.successors(roadm) if not isinstance(n, elements.Transceiver))
 | |
|     for oms in next_oms:
 | |
|         # go through all the OMS departing from the Roadm
 | |
|         node = roadm
 | |
|         prev_node = roadm
 | |
|         next_node = oms
 | |
|         # if isinstance(next_node, elements.Fused): #support ROADM wo egress amp for metro applications
 | |
|         #     node = find_last_node(next_node)
 | |
|         #     next_node = next(n for n in network.successors(node))
 | |
|         #     next_node = find_last_node(next_node)
 | |
|         prev_dp = getattr(node.params, 'target_pch_out_db', 0)
 | |
|         dp = prev_dp
 | |
|         prev_voa = 0
 | |
|         voa = 0
 | |
|         while True:
 | |
|             # go through all nodes in the OMS (loop until next Roadm instance)
 | |
|             if isinstance(node, elements.Edfa):
 | |
|                 node_loss = span_loss(network, prev_node)
 | |
|                 voa = node.out_voa if node.out_voa else 0
 | |
|                 if node.delta_p is None:
 | |
|                     dp = target_power(network, next_node, equipment)
 | |
|                 else:
 | |
|                     dp = node.delta_p
 | |
|                 gain_from_dp = node_loss + dp - prev_dp + prev_voa
 | |
|                 if node.effective_gain is None or power_mode:
 | |
|                     gain_target = gain_from_dp
 | |
|                 else:  # gain mode with effective_gain
 | |
|                     gain_target = node.effective_gain
 | |
|                     dp = prev_dp - node_loss + gain_target
 | |
| 
 | |
|                 power_target = pref_total_db + dp
 | |
| 
 | |
|                 raman_allowed = False
 | |
|                 if isinstance(prev_node, elements.Fiber):
 | |
|                     max_fiber_lineic_loss_for_raman = \
 | |
|                         equipment['Span']['default'].max_fiber_lineic_loss_for_raman
 | |
|                     raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
 | |
| 
 | |
|                 # implementation of restrictions on roadm boosters
 | |
|                 if isinstance(prev_node, elements.Roadm):
 | |
|                     if prev_node.restrictions['booster_variety_list']:
 | |
|                         restrictions = prev_node.restrictions['booster_variety_list']
 | |
|                     else:
 | |
|                         restrictions = None
 | |
|                 elif isinstance(next_node, elements.Roadm):
 | |
|                     # implementation of restrictions on roadm preamp
 | |
|                     if next_node.restrictions['preamp_variety_list']:
 | |
|                         restrictions = next_node.restrictions['preamp_variety_list']
 | |
|                     else:
 | |
|                         restrictions = None
 | |
|                 else:
 | |
|                     restrictions = None
 | |
| 
 | |
|                 if node.params.type_variety == '':
 | |
|                     edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment, node.uid, restrictions)
 | |
|                     extra_params = equipment['Edfa'][edfa_variety]
 | |
|                     node.params.update_params(extra_params.__dict__)
 | |
|                     dp += power_reduction
 | |
|                     gain_target += power_reduction
 | |
|                 elif node.params.raman and not raman_allowed:
 | |
|                     print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n but fiber lineic loss is above threshold\n')
 | |
| 
 | |
|                 node.delta_p = dp if power_mode else None
 | |
|                 node.effective_gain = gain_target
 | |
|                 set_amplifier_voa(node, power_target, power_mode)
 | |
|             if isinstance(next_node, elements.Roadm) or isinstance(next_node, elements.Transceiver):
 | |
|                 break
 | |
|             prev_dp = dp
 | |
|             prev_voa = voa
 | |
|             prev_node = node
 | |
|             node = next_node
 | |
|             # print(f'{node.uid}')
 | |
|             next_node = next(n for n in network.successors(node))
 | |
| 
 | |
| 
 | |
| def add_egress_amplifier(network, node):
 | |
|     next_nodes = [n for n in network.successors(node)
 | |
|                   if not (isinstance(n, elements.Transceiver) or isinstance(n, elements.Fused) or isinstance(n, elements.Edfa))]
 | |
|     # no amplification for fused spans or TRX
 | |
|     for i, next_node in enumerate(next_nodes):
 | |
|         network.remove_edge(node, next_node)
 | |
|         amp = elements.Edfa(
 | |
|             uid=f'Edfa{i}_{node.uid}',
 | |
|             params={},
 | |
|             metadata={
 | |
|                 'location': {
 | |
|                     'latitude': (node.lat * 2 + next_node.lat * 2) / 4,
 | |
|                     'longitude': (node.lng * 2 + next_node.lng * 2) / 4,
 | |
|                     'city': node.loc.city,
 | |
|                     'region': node.loc.region,
 | |
|                 }
 | |
|             },
 | |
|             operational={
 | |
|                 'gain_target': None,
 | |
|                 'tilt_target': 0,
 | |
|             })
 | |
|         network.add_node(amp)
 | |
|         if isinstance(node, elements.Fiber):
 | |
|             edgeweight = node.params.length
 | |
|         else:
 | |
|             edgeweight = 0.01
 | |
|         network.add_edge(node, amp, weight=edgeweight)
 | |
|         network.add_edge(amp, next_node, weight=0.01)
 | |
| 
 | |
| 
 | |
| def calculate_new_length(fiber_length, bounds, target_length):
 | |
|     if fiber_length < bounds.stop:
 | |
|         return fiber_length, 1
 | |
| 
 | |
|     n_spans = int(fiber_length // target_length)
 | |
| 
 | |
|     length1 = fiber_length / (n_spans + 1)
 | |
|     delta1 = target_length - length1
 | |
|     result1 = (length1, n_spans + 1)
 | |
| 
 | |
|     length2 = fiber_length / n_spans
 | |
|     delta2 = length2 - target_length
 | |
|     result2 = (length2, n_spans)
 | |
| 
 | |
|     if (bounds.start <= length1 <= bounds.stop) and not(bounds.start <= length2 <= bounds.stop):
 | |
|         result = result1
 | |
|     elif (bounds.start <= length2 <= bounds.stop) and not(bounds.start <= length1 <= bounds.stop):
 | |
|         result = result2
 | |
|     else:
 | |
|         result = result1 if delta1 < delta2 else result2
 | |
| 
 | |
|     return result
 | |
| 
 | |
| 
 | |
| def split_fiber(network, fiber, bounds, target_length, equipment):
 | |
|     new_length, n_spans = calculate_new_length(fiber.params.length, bounds, target_length)
 | |
|     if n_spans == 1:
 | |
|         return
 | |
| 
 | |
|     try:
 | |
|         next_node = next(network.successors(fiber))
 | |
|         prev_node = next(network.predecessors(fiber))
 | |
|     except StopIteration:
 | |
|         raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
 | |
| 
 | |
|     network.remove_node(fiber)
 | |
| 
 | |
|     fiber.params.length = new_length
 | |
| 
 | |
|     f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat])
 | |
|     xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n + 1) / (n_spans + 1) for n in range(n_spans)]
 | |
|     ypos = f(xpos)
 | |
|     for span, lng, lat in zip(range(n_spans), xpos, ypos):
 | |
|         new_span = elements.Fiber(uid=f'{fiber.uid}_({span+1}/{n_spans})',
 | |
|                          type_variety=fiber.type_variety,
 | |
|                          metadata={
 | |
|                               'location': {
 | |
|                                   'latitude': lat,
 | |
|                                   'longitude': lng,
 | |
|                                   'city': fiber.loc.city,
 | |
|                                   'region': fiber.loc.region,
 | |
|                               }
 | |
|                          },
 | |
|                          params=fiber.params.asdict())
 | |
|         if isinstance(prev_node, elements.Fiber):
 | |
|             edgeweight = prev_node.params.length
 | |
|         else:
 | |
|             edgeweight = 0.01
 | |
|         network.add_edge(prev_node, new_span, weight=edgeweight)
 | |
|         prev_node = new_span
 | |
|     if isinstance(prev_node, elements.Fiber):
 | |
|         edgeweight = prev_node.params.length
 | |
|     else:
 | |
|         edgeweight = 0.01
 | |
|     network.add_edge(prev_node, next_node, weight=edgeweight)
 | |
| 
 | |
| 
 | |
| def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
 | |
|     for fiber in fibers:
 | |
|         if fiber.params.con_in is None:
 | |
|             fiber.params.con_in = default_con_in
 | |
|         if fiber.params.con_out is None:
 | |
|             fiber.params.con_out = default_con_out
 | |
|         next_node = next(n for n in network.successors(fiber))
 | |
|         if not isinstance(next_node, elements.Fused):
 | |
|             fiber.params.con_out += EOL
 | |
| 
 | |
| 
 | |
| def add_fiber_padding(network, fibers, padding):
 | |
|     """last_fibers = (fiber for n in network.nodes()
 | |
|                          if not (isinstance(n, elements.Fiber) or isinstance(n, elements.Fused))
 | |
|                          for fiber in network.predecessors(n)
 | |
|                          if isinstance(fiber, elements.Fiber))"""
 | |
|     for fiber in fibers:
 | |
|         this_span_loss = span_loss(network, fiber)
 | |
|         try:
 | |
|             next_node = next(network.successors(fiber))
 | |
|         except StopIteration:
 | |
|             raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
 | |
|         if this_span_loss < padding and not (isinstance(next_node, elements.Fused)):
 | |
|             # add a padding att_in at the input of the 1st fiber:
 | |
|             # address the case when several fibers are spliced together
 | |
|             first_fiber = find_first_node(network, fiber)
 | |
|             # in order to support no booster , fused might be placed
 | |
|             # just after a roadm: need to check that first_fiber is really a fiber
 | |
|             if isinstance(first_fiber, elements.Fiber):
 | |
|                 if first_fiber.params.att_in is None:
 | |
|                     first_fiber.params.att_in = padding - this_span_loss
 | |
|                 else:
 | |
|                     first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss
 | |
| 
 | |
| 
 | |
| def build_network(network, equipment, pref_ch_db, pref_total_db):
 | |
|     default_span_data = equipment['Span']['default']
 | |
|     max_length = int(convert_length(default_span_data.max_length, default_span_data.length_units))
 | |
|     min_length = max(int(default_span_data.padding / 0.2 * 1e3), 50_000)
 | |
|     bounds = range(min_length, max_length)
 | |
|     target_length = max(min_length, 90_000)
 | |
|     default_con_in = default_span_data.con_in
 | |
|     default_con_out = default_span_data.con_out
 | |
|     padding = default_span_data.padding
 | |
| 
 | |
|     # set roadm loss for gain_mode before to build network
 | |
|     fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
 | |
|     add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL)
 | |
|     add_fiber_padding(network, fibers, padding)
 | |
|     # don't group split fiber and add amp in the same loop
 | |
|     # =>for code clarity (at the expense of speed):
 | |
|     for fiber in fibers:
 | |
|         split_fiber(network, fiber, bounds, target_length, equipment)
 | |
| 
 | |
|     amplified_nodes = [n for n in network.nodes() if isinstance(n, elements.Fiber) or isinstance(n, elements.Roadm)]
 | |
| 
 | |
|     for node in amplified_nodes:
 | |
|         add_egress_amplifier(network, node)
 | |
| 
 | |
|     roadms = [r for r in network.nodes() if isinstance(r, elements.Roadm)]
 | |
|     for roadm in roadms:
 | |
|         set_egress_amplifier(network, roadm, equipment, pref_total_db)
 | |
| 
 | |
|     # support older json input topology wo Roadms:
 | |
|     if len(roadms) == 0:
 | |
|         trx = [t for t in network.nodes() if isinstance(t, elements.Transceiver)]
 | |
|         for t in trx:
 | |
|             set_egress_amplifier(network, t, equipment, pref_total_db)
 |