Files
oopt-gnpy/gnpy/core/convert.py
Jean-Luc Auge 5d92baf35e Add link duplication check for the xls parser
Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>

Check and remove duplicate links

a warning is issued when a duplicate link is dicovered
the execution is paused for the user ot see the warning
the duplicate link is removed and the execution resumed

Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
2019-01-14 12:16:16 +01:00

556 lines
22 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.convert
=================
This module contains utilities for converting between XLS and JSON.
The input XLS file must contain sheets named "Nodes" and "Links".
It may optionally contain a sheet named "Eqpt".
In the "Nodes" sheet, only the "City" column is mandatory. The column "Type"
can be determined automatically given the topology (e.g., if degree 2, ILA;
otherwise, ROADM.) Incorrectly specified types (e.g., ILA for node of
degree ≠ 2) will be automatically corrected.
In the "Links" sheet, only the first three columns ("Node A", "Node Z" and
"east Distance (km)") are mandatory. Missing "west" information is copied from
the "east" information so that it is possible to input undirected data.
"""
from sys import exit
try:
from xlrd import open_workbook
except ModuleNotFoundError:
exit('Required: `pip install xlrd`')
from argparse import ArgumentParser
from collections import namedtuple, Counter, defaultdict
from itertools import chain
from json import dumps
from pathlib import Path
from difflib import get_close_matches
import time
all_rows = lambda sh, start=0: (sh.row(x) for x in range(start, sh.nrows))
class Node(object):
def __init__(self, **kwargs):
super(Node, self).__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
for k,v in kwargs.items():
setattr(self, k, v if v!='' else self.default_values[k])
default_values = \
{
'city': '',
'state': '',
'country': '',
'region': '',
'latitude': 0,
'longitude': 0,
'node_type': 'ILA'
}
class Link(object):
"""attribtes from ingress parse_ept_headers dict
+node_a, node_z, ingress_fiber_con_in, egress_fiber_con_in
"""
def __init__(self, **kwargs):
super(Link, self).__init__()
self.update_attr(kwargs)
# need to update west after east, in case east is copied over west
self.update_west(kwargs)
self.distance_units = 'km'
def update_attr(self, kwargs):
for k,v in kwargs.items():
if not 'west' in k:
setattr(self, k, v if v!='' else self.default_values[k])
def update_west(self, kwargs):
for k,v in kwargs.items():
if 'west' in k:
if v=='':
attribut = 'east' + k.split('west')[-1]
setattr(self, k, getattr(self, attribut))
else:
setattr(self, k, v)
def __eq__(self, link):
return (self.from_city == link.from_city and self.to_city == link.to_city) \
or (self.from_city == link.to_city and self.to_city == link.from_city)
default_values = \
{
'east_distance': 80,
'east_fiber': 'SSMF',
'east_lineic': 0.2,
'east_con_in': None,
'east_con_out': None,
'east_pmd': 0.1,
'east_cable': ''
}
class Eqpt(object):
def __init__(self, **kwargs):
super(Eqpt, self).__init__()
self.update_attr(kwargs)
def update_attr(self, kwargs):
for k,v in kwargs.items():
if v=='':
# remove east/west prefix to map default values that are east/west agnostic
attribut = k.split('west_')[-1]
attribut = attribut.split('east_')[-1]
print(attribut)
setattr(self, k, self.default_values[attribut])
else:
setattr(self, k, v)
default_values = \
{
'from_city': '',
'to_city': '',
'amp_type': '',
'att_in': 0,
'amp_gain': 0,
'tilt': 0,
'att_out': 0
}
def read_header(my_sheet, line, slice_):
""" return the list of headers !:= ''
header_i = [(header, header_column_index), ...]
in a {line, slice1_x, slice_y} range
"""
Param_header = namedtuple('Param_header', 'header colindex')
try:
header = [x.value.strip() for x in my_sheet.row_slice(line, slice_[0], slice_[1])]
header_i = [Param_header(header,i+slice_[0]) for i, header in enumerate(header) if header != '']
except:
header_i = []
if header_i != [] and header_i[-1].colindex != slice_[1]:
header_i.append(Param_header('',slice_[1]))
return header_i
def read_slice(my_sheet, line, slice_, header):
"""return the slice range of a given header
in a defined range {line, slice_x, slice_y}"""
header_i = read_header(my_sheet, line, slice_)
slice_range = (-1,-1)
if header_i != []:
try:
slice_range = next((h.colindex,header_i[i+1].colindex) \
for i,h in enumerate(header_i) if header in h.header)
except:
pass
return slice_range
def parse_headers(my_sheet, input_headers_dict, headers, start_line, slice_in):
"""return a dict of header1_slice
key = column index
value = all_headers 3rd order value
= Ept_inputs attributs"""
for h0 in input_headers_dict:
slice_out = read_slice(my_sheet, start_line, slice_in, h0)
iteration = 1
while slice_out == (-1,-1) and iteration < 10:
#try next lines
#print(h0, iteration)
slice_out = read_slice(my_sheet, start_line+iteration, slice_in, h0)
iteration += 1
if slice_out == (-1, -1):
print(f'critical missing header {h0}, abort parsing')
exit()
if not isinstance(input_headers_dict[h0], dict):
headers[slice_out[0]] = input_headers_dict[h0]
else:
headers = parse_headers(my_sheet, input_headers_dict[h0], headers, start_line+1, slice_out)
return headers
def parse_row(row, headers):
#print([label for label in ept.values()])
#print([i for i in ept.keys()])
#print(row[i for i in ept.keys()])
return {f: r.value for f, r in \
zip([label for label in headers.values()], [row[i] for i in headers])}
#if r.ctype != XL_CELL_EMPTY}
def parse_sheet(my_sheet, input_headers_dict, header_line, start_line, column):
headers = parse_headers(my_sheet, input_headers_dict, {}, header_line, (0,column))
for row in all_rows(my_sheet, start=start_line):
yield parse_row(row[0: column], headers)
def sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city):
duplicate_links = []
for l1 in links:
for l2 in links:
if l1 is not l2 and l1 == l2 and l2 not in duplicate_links:
print(f'\nWARNING\n \
link {l1.from_city}-{l1.to_city} is duplicate \
\nthe 1st duplicate link will be removed but you should check Links sheet input')
duplicate_links.append(l1)
if duplicate_links != []:
time.sleep(3)
for l in duplicate_links:
links.remove(l)
try :
test_nodes = [n for n in nodes_by_city if not n in links_by_city]
test_links = [n for n in links_by_city if not n in nodes_by_city]
test_eqpts = [n for n in eqpts_by_city if not n in nodes_by_city]
assert (test_nodes == [] or test_nodes == [''])\
and (test_links == [] or test_links ==[''])\
and (test_eqpts == [] or test_eqpts ==[''])
except AssertionError:
print(f'CRITICAL error: \nNames in Nodes and Links sheets do no match, check:\
\n{test_nodes} in Nodes sheet\
\n{test_links} in Links sheet\
\n{test_eqpts} in Eqpt sheet')
exit(1)
for city,link in links_by_city.items():
if nodes_by_city[city].node_type.lower()=='ila' and len(link) != 2:
#wrong input: ILA sites can only be Degree 2
# => correct to make it a ROADM and remove entry in links_by_city
#TODO : put in log rather than print
print(f'invalid node type ({nodes_by_city[city].node_type})\
specified in {city}, replaced by ROADM')
nodes_by_city[city].node_type = 'ROADM'
for n in nodes:
if n.city==city:
n.node_type='ROADM'
return nodes, links
def convert_file(input_filename, filter_region=[]):
nodes, links, eqpts = parse_excel(input_filename)
if filter_region:
nodes = [n for n in nodes if n.region.lower() in filter_region]
cities = {n.city for n in nodes}
links = [lnk for lnk in links if lnk.from_city in cities and
lnk.to_city in cities]
cities = {lnk.from_city for lnk in links} | {lnk.to_city for lnk in links}
nodes = [n for n in nodes if n.city in cities]
global nodes_by_city
nodes_by_city = {n.city: n for n in nodes}
global links_by_city
links_by_city = defaultdict(list)
for link in links:
links_by_city[link.from_city].append(link)
links_by_city[link.to_city].append(link)
global eqpts_by_city
eqpts_by_city = defaultdict(list)
for eqpt in eqpts:
eqpts_by_city[eqpt.from_city].append(eqpt)
nodes, links = sanity_check(nodes, links, nodes_by_city, links_by_city, eqpts_by_city)
data = {
'elements':
[{'uid': f'trx {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Transceiver'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'] +
[{'uid': f'roadm {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Roadm'}
for x in nodes_by_city.values() if x.node_type.lower() == 'roadm'] +
[{'uid': f'ingress fused spans in {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Fused'}
for x in nodes_by_city.values() if x.node_type.lower() == 'fused'] +
[{'uid': f'egress fused spans in {x.city}',
'metadata': {'location': {'city': x.city,
'region': x.region,
'latitude': x.latitude,
'longitude': x.longitude}},
'type': 'Fused'}
for x in nodes_by_city.values() if x.node_type.lower() == 'fused'] +
[{'uid': f'fiber ({x.from_city} \u2192 {x.to_city})-{x.east_cable}',
'metadata': {'location': midpoint(nodes_by_city[x.from_city],
nodes_by_city[x.to_city])},
'type': 'Fiber',
'type_variety': x.east_fiber,
'params': {'length': round(x.east_distance, 3),
'length_units': x.distance_units,
'loss_coef': x.east_lineic,
'con_in':x.east_con_in,
'con_out':x.east_con_out}
}
for x in links] +
[{'uid': f'fiber ({x.to_city} \u2192 {x.from_city})-{x.west_cable}',
'metadata': {'location': midpoint(nodes_by_city[x.from_city],
nodes_by_city[x.to_city])},
'type': 'Fiber',
'type_variety': x.west_fiber,
'params': {'length': round(x.west_distance, 3),
'length_units': x.distance_units,
'loss_coef': x.west_lineic,
'con_in':x.west_con_in,
'con_out':x.west_con_out}
} # missing ILA construction
for x in links] +
[{'uid': f'egress edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Edfa',
'type_variety': e.egress_amp_type,
'operational': {'gain_target': e.egress_amp_gain,
'tilt_target': e.egress_amp_tilt}
}
for e in eqpts if e.egress_amp_type.lower() != ''] +
[{'uid': f'ingress edfa in {e.from_city} to {e.to_city}',
'metadata': {'location': {'city': nodes_by_city[e.from_city].city,
'region': nodes_by_city[e.from_city].region,
'latitude': nodes_by_city[e.from_city].latitude,
'longitude': nodes_by_city[e.from_city].longitude}},
'type': 'Edfa',
'type_variety': e.ingress_amp_type,
'operational': {'gain_target': e.ingress_amp_gain,
'tilt_target': e.ingress_amp_tilt}
}
for e in eqpts if e.ingress_amp_type.lower() != ''],
'connections':
list(chain.from_iterable([eqpt_connection_by_city(n.city)
for n in nodes]))
+
list(chain.from_iterable(zip(
[{'from_node': f'trx {x.city}',
'to_node': f'roadm {x.city}'}
for x in nodes_by_city.values() if x.node_type.lower()=='roadm'],
[{'from_node': f'roadm {x.city}',
'to_node': f'trx {x.city}'}
for x in nodes_by_city.values() if x.node_type.lower()=='roadm'])))
}
suffix_filename = str(input_filename.suffixes[0])
full_input_filename = str(input_filename)
split_filename = [full_input_filename[0:len(full_input_filename)-len(suffix_filename)] , suffix_filename[1:]]
output_json_file_name = split_filename[0]+'.json'
with open(output_json_file_name, 'w', encoding='utf-8') as edfa_json_file:
edfa_json_file.write(dumps(data, indent=2, ensure_ascii=False))
return output_json_file_name
def parse_excel(input_filename):
link_headers = \
{ 'Node A': 'from_city',
'Node Z': 'to_city',
'east':{
'Distance (km)': 'east_distance',
'Fiber type': 'east_fiber',
'lineic att': 'east_lineic',
'Con_in': 'east_con_in',
'Con_out': 'east_con_out',
'PMD': 'east_pmd',
'Cable id': 'east_cable'
},
'west':{
'Distance (km)': 'west_distance',
'Fiber type': 'west_fiber',
'lineic att': 'west_lineic',
'Con_in': 'west_con_in',
'Con_out': 'west_con_out',
'PMD': 'west_pmd',
'Cable id': 'west_cable'
}
}
node_headers = \
{ 'City': 'city',
'State': 'state',
'Country': 'country',
'Region': 'region',
'Latitude': 'latitude',
'Longitude': 'longitude',
'Type': 'node_type'
}
eqpt_headers = \
{ 'Node A': 'from_city',
'Node Z': 'to_city',
'egress':{
'amp type': 'east_amp_type',
'att_in': 'east_att_in',
'amp gain': 'east_amp_gain',
'tilt': 'east_tilt',
'att_out': 'east_att_out'
},
'ingress':{
'amp type': 'west_amp_type',
'att_in': 'west_att_in',
'amp gain': 'west_amp_gain',
'tilt': 'west_tilt',
'att_out': 'west_att_out'
}
}
with open_workbook(input_filename) as wb:
nodes_sheet = wb.sheet_by_name('Nodes')
links_sheet = wb.sheet_by_name('Links')
try:
eqpt_sheet = wb.sheet_by_name('Eqpt')
except:
#eqpt_sheet is optional
eqpt_sheet = None
nodes = []
for node in parse_sheet(nodes_sheet, node_headers, NODES_LINE, NODES_LINE+1, NODES_COLUMN):
nodes.append(Node(**node))
expected_node_types = ('ROADM', 'ILA', 'FUSED')
for n in nodes:
if not (n.node_type in expected_node_types):
n.node_type='ILA'
links = []
for link in parse_sheet(links_sheet, link_headers, LINKS_LINE, LINKS_LINE+2, LINKS_COLUMN):
links.append(Link(**link))
#print('\n', [l.__dict__ for l in links])
eqpts = []
if eqpt_sheet != None:
for eqpt in parse_sheet(eqpt_sheet, eqpt_headers, EQPTS_LINE, EQPTS_LINE+2, EQPTS_COLUMN):
eqpts.append(Eqpt(**eqpt))
# sanity check
all_cities = Counter(n.city for n in nodes)
if len(all_cities) != len(nodes):
ValueError(f'Duplicate city: {all_cities}')
if any(ln.from_city not in all_cities or
ln.to_city not in all_cities for ln in links):
ValueError(f'Bad link.')
return nodes, links, eqpts
def eqpt_connection_by_city(city_name):
other_cities = fiber_dest_from_source(city_name)
subdata = []
if nodes_by_city[city_name].node_type.lower() in ('ila', 'fused'):
# Then len(other_cities) == 2
direction = ['ingress', 'egress']
for i in range(2):
from_ = fiber_link(other_cities[i], city_name)
in_ = eqpt_in_city_to_city(city_name, other_cities[0],direction[i])
to_ = fiber_link(city_name, other_cities[1-i])
subdata += connect_eqpt(from_, in_, to_)
elif nodes_by_city[city_name].node_type.lower() == 'roadm':
for other_city in other_cities:
from_ = f'roadm {city_name}'
in_ = eqpt_in_city_to_city(city_name, other_city)
to_ = fiber_link(city_name, other_city)
subdata += connect_eqpt(from_, in_, to_)
from_ = fiber_link(other_city, city_name)
in_ = eqpt_in_city_to_city(city_name, other_city, "ingress")
to_ = f'roadm {city_name}'
subdata += connect_eqpt(from_, in_, to_)
return subdata
def connect_eqpt(from_, in_, to_):
connections = []
if in_ !='':
connections = [{'from_node': from_, 'to_node': in_},
{'from_node': in_, 'to_node': to_}]
else:
connections = [{'from_node': from_, 'to_node': to_}]
return connections
def eqpt_in_city_to_city(in_city, to_city, direction='egress'):
rev_direction = 'ingress' if direction == 'egress' else 'egress'
amp_direction = f'{direction}_amp_type'
amp_rev_direction = f'{rev_direction}_amp_type'
return_eqpt = ''
if in_city in eqpts_by_city:
for e in eqpts_by_city[in_city]:
if nodes_by_city[in_city].node_type.lower() == 'roadm':
if e.to_city == to_city and getattr(e, amp_direction) != '':
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
elif nodes_by_city[in_city].node_type.lower() == 'ila':
if e.to_city != to_city:
direction = rev_direction
amp_direction = amp_rev_direction
if getattr(e, amp_direction) != '':
return_eqpt = f'{direction} edfa in {e.from_city} to {e.to_city}'
if nodes_by_city[in_city].node_type.lower() == 'fused':
return_eqpt = f'{direction} fused spans in {in_city}'
return return_eqpt
def fiber_dest_from_source(city_name):
destinations = []
links_from_city = links_by_city[city_name]
for l in links_from_city:
if l.from_city == city_name:
destinations.append(l.to_city)
else:
destinations.append(l.from_city)
return destinations
def fiber_link(from_city, to_city):
source_dest = (from_city, to_city)
link = links_by_city[from_city]
l = next(l for l in link if l.from_city in source_dest and l.to_city in source_dest)
if l.from_city == from_city:
fiber = f'fiber ({l.from_city} \u2192 {l.to_city})-{l.east_cable}'
else:
fiber = f'fiber ({l.to_city} \u2192 {l.from_city})-{l.west_cable}'
return fiber
def midpoint(city_a, city_b):
lats = city_a.latitude, city_b.latitude
longs = city_a.longitude, city_b.longitude
try:
result = {
'latitude': sum(lats) / 2,
'longitude': sum(longs) / 2
}
except :
result = {
'latitude': 0,
'longitude': 0
}
return result
#output_json_file_name = 'coronet_conus_example.json'
#TODO get column size automatically from tupple size
NODES_COLUMN = 7
NODES_LINE = 4
LINKS_COLUMN = 16
LINKS_LINE = 3
EQPTS_LINE = 3
EQPTS_COLUMN = 12
parser = ArgumentParser()
parser.add_argument('workbook', nargs='?', type=Path , default='meshTopologyExampleV2.xls')
parser.add_argument('-f', '--filter-region', action='append', default=[])
if __name__ == '__main__':
args = parser.parse_args()
convert_file(args.workbook, args.filter_region)