Files
oopt-gnpy/gnpy/core/request.py
EstherLerouzic 609cd94798 Remove @ in path-metric names and extend type to decimal64
@ character not correctly read with OpenDayLight yang tool used
for transportPCE project.
https://docs.opendaylight.org/en/stable-nitrogen/developer-guide/yang-tools.html#working-with-yang-model.
Changed the names of path metrics from osnr@ to osnr-

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
2019-10-09 15:38:42 +01:00

877 lines
37 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.request
=================
This module contains path request functionality.
This functionality allows the user to provide a JSON request
file in accordance with a Yang model for requesting path
computations and returns path results in terms of path
and feasibility
See: draft-ietf-teas-yang-path-computation-01.txt
"""
from sys import exit
from collections import namedtuple
from logging import getLogger, basicConfig, CRITICAL, DEBUG, INFO
from networkx import (dijkstra_path, NetworkXNoPath, all_simple_paths,shortest_path_length)
from networkx.utils import pairwise
from numpy import mean
from gnpy.core.service_sheet import convert_service_sheet, Request_element, Element
from gnpy.core.elements import Transceiver, Roadm, Edfa, Fused
from gnpy.core.utils import db2lin, lin2db
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power
from copy import copy, deepcopy
from csv import writer
from math import ceil
logger = getLogger(__name__)
RequestParams = namedtuple('RequestParams','request_id source destination trx_type'+
' trx_mode nodes_list loose_list spacing power nb_channel f_min f_max format baud_rate OSNR bit_rate roll_off tx_osnr min_spacing cost path_bandwidth')
DisjunctionParams = namedtuple('DisjunctionParams','disjunction_id relaxable link_diverse node_diverse disjunctions_req')
class Path_request:
def __init__(self, *args, **params):
params = RequestParams(**params)
self.request_id = params.request_id
self.source = params.source
self.destination = params.destination
self.tsp = params.trx_type
self.tsp_mode = params.trx_mode
self.baud_rate = params.baud_rate
self.nodes_list = params.nodes_list
self.loose_list = params.loose_list
self.spacing = params.spacing
self.power = params.power
self.nb_channel = params.nb_channel
self.f_min = params.f_min
self.f_max = params.f_max
self.format = params.format
self.OSNR = params.OSNR
self.bit_rate = params.bit_rate
self.roll_off = params.roll_off
self.tx_osnr = params.tx_osnr
self.min_spacing = params.min_spacing
self.cost = params.cost
self.path_bandwidth = params.path_bandwidth
def __str__(self):
return '\n\t'.join([ f'{type(self).__name__} {self.request_id}',
f'source: {self.source}',
f'destination: {self.destination}'])
def __repr__(self):
if self.baud_rate is not None:
temp = self.baud_rate * 1e-9
temp2 = self.bit_rate * 1e-9
else:
temp = self.baud_rate
temp2 = self.bit_rate
return '\n\t'.join([ f'{type(self).__name__} {self.request_id}',
f'source: \t{self.source}',
f'destination:\t{self.destination}',
f'trx type:\t{self.tsp}',
f'trx mode:\t{self.tsp_mode}',
f'baud_rate:\t{temp} Gbaud',
f'bit_rate:\t{temp2} Gb/s',
f'spacing:\t{self.spacing * 1e-9} GHz',
f'power: \t{round(lin2db(self.power)+30,2)} dBm',
f'nb channels: \t{self.nb_channel}',
f'path_bandwidth: \t{round(self.path_bandwidth * 1e-9,2)} Gbit/s',
f'nodes-list:\t{self.nodes_list}',
f'loose-list:\t{self.loose_list}'
'\n'])
class Disjunction:
def __init__(self, *args, **params):
params = DisjunctionParams(**params)
self.disjunction_id = params.disjunction_id
self.relaxable = params.relaxable
self.link_diverse = params.link_diverse
self.node_diverse = params.node_diverse
self.disjunctions_req = params.disjunctions_req
def __str__(self):
return '\n\t'.join([f'relaxable: {self.relaxable}',
f'link-diverse: {self.link_diverse}',
f'node-diverse: {self.node_diverse}',
f'request-id-numbers: {self.disjunctions_req}']
)
def __repr__(self):
return '\n\t'.join([ f'{type(self).__name__} {self.disjunction_id}',
f'relaxable: {self.relaxable}',
f'link-diverse: {self.link_diverse}',
f'node-diverse: {self.node_diverse}',
f'request-id-numbers: {self.disjunctions_req}'
'\n'])
class Result_element(Element):
def __init__(self,path_request,computed_path):
self.path_id = path_request.request_id
self.path_request = path_request
self.computed_path = computed_path
uid = property(lambda self: repr(self))
@property
def pathresult(self):
if not self.computed_path:
return {
'response-id': self.path_id,
'no-path': "Response without path information, due to failure performing the path computation"
}
else:
index = 0
pro_list = []
for n in self.computed_path :
temp = {
'path-route-object': {
'index': index,
'num-unnum-hop': {
'node-id': n.uid,
'link-tp-id': n.uid,
# TODO change index in order to insert transponder attribute
}
}
}
pro_list.append(temp)
index += 1
if isinstance(n, Transceiver) :
temp = {
'path-route-object': {
'index': index,
'transponder' : {
'transponder-type' : self.path_request.tsp,
'transponder-mode' : self.path_request.tsp_mode,
}
}
}
pro_list.append(temp)
index += 1
response = {
'response-id': self.path_id,
'path-properties':{
'path-metric': [
{
'metric-type': 'SNR-bandwidth',
'accumulative-value': round(mean(self.computed_path[-1].snr),2)
},
{
'metric-type': 'SNR-0.1nm',
'accumulative-value': round(mean(self.computed_path[-1].snr+lin2db(self.path_request.baud_rate/12.5e9)),2)
},
{
'metric-type': 'OSNR-bandwidth',
'accumulative-value': round(mean(self.computed_path[-1].osnr_ase),2)
},
{
'metric-type': 'OSNR-0.1nm',
'accumulative-value': round(mean(self.computed_path[-1].osnr_ase_01nm),2)
},
{
'metric-type': 'reference_power',
'accumulative-value': self.path_request.power
},
{
'metric-type': 'path_bandwidth',
'accumulative-value': self.path_request.path_bandwidth
}
],
'path-route-objects': pro_list
}
}
return response
@property
def json(self):
return self.pathresult
def compute_constrained_path(network, req):
trx = [n for n in network.nodes() if isinstance(n, Transceiver)]
roadm = [n for n in network.nodes() if isinstance(n, Roadm)]
edfa = [n for n in network.nodes() if isinstance(n, Edfa)]
anytypenode = [n for n in network.nodes()]
source = next(el for el in trx if el.uid == req.source)
# This method ensures that the constraint can be satisfied without loops
# except when it is not possible : eg if constraints makes a loop
# It requires that the source, dest and nodes are correct (no error in the names)
destination = next(el for el in trx if el.uid == req.destination)
nodes_list = []
for n in req.nodes_list :
# for debug excel print(n)
nodes_list.append(next(el for el in anytypenode if el.uid == n))
# nodes_list contains at least the destination
if nodes_list is None :
msg = f'Request {req.request_id} problem in the constitution of nodes_list: should at least include destination'
logger.critical(msg)
exit()
if req.nodes_list[-1] != req.destination:
msg = f'Request {req.request_id} malformed list of nodes: last node should be destination trx'
logger.critical(msg)
exit()
if len(nodes_list) == 1 :
try :
total_path = dijkstra_path(network, source, destination, weight = 'weight')
# print('checking edges length is correct')
# print(shortest_path_length(network,source,destination))
# print(shortest_path_length(network,source,destination,weight ='weight'))
# s = total_path[0]
# for e in total_path[1:]:
# print(s.uid)
# print(network.get_edge_data(s,e))
# s = e
except NetworkXNoPath:
msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path from {source.uid} to node : {destination.uid} in network topology'+ '\x1b[0m'
logger.critical(msg)
print(msg)
total_path = []
else :
all_simp_pths = list(all_simple_paths(network,source=source,\
target=destination, cutoff=120))
candidate = []
for p in all_simp_pths :
if ispart(nodes_list, p) :
# print(f'selection{[el.uid for el in p if el in roadm]}')
candidate.append(p)
# select the shortest path (in nb of hops) -> changed to shortest path in km length
if len(candidate)>0 :
# candidate.sort(key=lambda x: len(x))
candidate.sort(key=lambda x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
total_path = candidate[0]
else:
if req.loose_list[req.nodes_list.index(n)] == 'loose':
print(f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list} in network topology'+ '\x1b[0m')
print(f'constraint ignored')
total_path = dijkstra_path(network, source, destination, weight = 'weight')
else:
msg = f'\x1b[1;33;40m'+f'Request {req.request_id} could not find a path crossing {nodes_list}.\nNo path computed'+ '\x1b[0m'
logger.critical(msg)
print(msg)
total_path = []
# obsolete method: this does not guaranty to avoid loops or correct results
# Here is the demonstration :
# 1 1
# eg a----b-----c
# |1 |0.5 |1
# e----f--h--g
# 1 0.5 0.5
# if I have to compute a to g with constraint f-c
# result will be a concatenation of: a-b-f and f-b-c and c-g
# which means a loop.
# if to avoid loops I iteratively suppress edges of the segmenst in the topo
# segment 1 = a-b-f
# 1
# eg a b-----c
# |1 |1
# e----f--h--g
# 1 0.5 0.5
# then
# segment 2 = f-h-g-c
# 1
# eg a b-----c
# |1
# e----f h g
# 1
# then there is no more path to g destination
#
#
# total_path = [source]
# for n in req.nodes_list:
# try :
# node = next(el for el in trx if el.uid == n)
# except StopIteration:
# try:
# node = next(el for el in anytypenode if el.uid == n)
# except StopIteration:
# try:
# # TODO this test is not giving good results: full name of the
# # amp is required to avoid ambiguity on the direction
# node = next(el for el in anytypenode
# if n in el.uid)
# except StopIteration:
# msg = f'could not find node : {n} in network topology: \
# not a trx, roadm, edfa, fiber or fused element'
# logger.critical(msg)
# raise ValueError(msg)
# # extend path list without repeating source -> skip first element in the list
# try:
# # to avoid looping back: use an alternate graph were current path edges and vertex are suppressed
# total_path.extend(dijkstra_path(network, source, node)[1:])
# source = node
# except NetworkXNoPath:
# if req.loose_list[req.nodes_list.index(n)] == 'loose':
# print(f'could not find a path from {source.uid} to loose node : {n} in network topology')
# print(f'node {n} is skipped')
# else:
# msg = f'could not find a path from {source.uid} to node : {n} in network topology'
# logger.critical(msg)
# print(msg)
# total_path = []
return total_path
def propagate(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
for el in path:
si = el(si)
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
return path
def propagate2(path, req, equipment):
si = create_input_spectral_information(
req.f_min, req.f_max, req.roll_off, req.baud_rate,
req.power, req.spacing)
infos = {}
for el in path:
before_si = si
after_si = si = el(si)
infos[el] = before_si, after_si
path[-1].update_snr(req.tx_osnr, equipment['Roadm']['default'].add_drop_osnr)
return infos
def propagate_and_optimize_mode(path, req, equipment):
# if mode is unknown : loops on the modes starting from the highest baudrate fiting in the
# step 1: create an ordered list of modes based on baudrate
baudrate_to_explore = list(set([m['baud_rate'] for m in equipment['Transceiver'][req.tsp].mode
if float(m['min_spacing'])<= req.spacing]))
# TODO be carefull on limits cases if spacing very close to req spacing eg 50.001 50.000
baudrate_to_explore = sorted(baudrate_to_explore, reverse=True)
if baudrate_to_explore :
# at least 1 baudrate can be tested wrt spacing
for b in baudrate_to_explore :
modes_to_explore = [m for m in equipment['Transceiver'][req.tsp].mode
if m['baud_rate'] == b and float(m['min_spacing'])<= req.spacing]
modes_to_explore = sorted(modes_to_explore,
key = lambda x: x['bit_rate'], reverse=True)
# print(modes_to_explore)
# step2 : computes propagation for each baudrate: stop and select the first that passes
found_a_feasible_mode = False
# TODO : the case of roll of is not included: for now use SI one
# TODO : if the loop in mode optimization does not have a feasible path, then bugs
si = create_input_spectral_information(
req.f_min, req.f_max, equipment['SI']['default'].roll_off,
b, req.power, req.spacing)
for el in path:
si = el(si)
for m in modes_to_explore :
if path[-1].snr is not None:
path[-1].update_snr(m['tx_osnr'], equipment['Roadm']['default'].add_drop_osnr)
if round(min(path[-1].snr+lin2db(b/(12.5e9))),2) > m['OSNR'] :
found_a_feasible_mode = True
return path, m
else:
return [], None
# only get to this point if no baudrate/mode satisfies OSNR requirement
# returns the last propagated path and mode
msg = f'\tWarning! Request {req.request_id}: no mode satisfies path SNR requirement.\n'
print(msg)
logger.info(msg)
return [],None
else :
# no baudrate satisfying spacing
msg = f'\tWarning! Request {req.request_id}: no baudrate satisfies spacing requirement.\n'
print(msg)
logger.info(msg)
return [], None
def jsontocsv(json_data,equipment,fileout):
# read json path result file in accordance with:
# Yang model for requesting Path Computation
# draft-ietf-teas-yang-path-computation-01.txt.
# and write results in an CSV file
mywriter = writer(fileout)
mywriter.writerow(('response-id','source','destination','path_bandwidth','Pass?',\
'nb of tsp pairs','total cost','transponder-type','transponder-mode',\
'OSNR-0.1nm','SNR-0.1nm','SNR-bandwidth','baud rate (Gbaud)',\
'input power (dBm)','path'))
tspjsondata = equipment['Transceiver']
#print(tspjsondata)
for p in json_data['response']:
path_id = p['response-id']
try:
if p['no-path'] :
source = ''
destination = ''
tsp = ''
mode = ''
isok = False
nb_tsp = 0
pthbdbw = ''
rosnr = ''
rsnr = ''
rsnrb = ''
br = ''
pw = ''
total_cost = ''
pth = ''
except KeyError:
source = p['path-properties']['path-route-objects'][0]\
['path-route-object']['num-unnum-hop']['node-id']
destination = p['path-properties']['path-route-objects'][-2]\
['path-route-object']['num-unnum-hop']['node-id']
# selects only roadm nodes
temp = []
for e in p['path-properties']['path-route-objects'] :
try :
temp .append(e['path-route-object']['num-unnum-hop']['node-id'])
except KeyError:
pass
pth = ' | '.join(temp)
temp_tsp = pth_el['path-properties']['path-route-objects'][1]\
['path-route-object']['transponder']
tsp = temp_tsp['transponder-type']
mode = temp_tsp['transponder-mode']
# find the min acceptable OSNR, baud rate from the eqpt library based on tsp (tupe) and mode (format)
# loading equipment already tests the existence of tsp type and mode:
if mode !='not feasible with this transponder' :
[minosnr, baud_rate, bit_rate, cost] = next([m['OSNR'] , m['baud_rate'] , m['bit_rate'], m['cost']]
for m in equipment['Transceiver'][tsp].mode if m['format']==mode)
# else:
# [minosnr, baud_rate, bit_rate] = ['','','','']
output_snr = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'SNR-0.1nm')
output_snrbandwidth = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'SNR-bandwidth')
output_osnr = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'OSNR-0.1nm')
output_osnrbandwidth = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'OSNR-bandwidth')
power = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'reference_power')
path_bandwidth = next(e['accumulative-value']
for e in p['path-properties']['path-metric'] if e['metric-type'] == 'path_bandwidth')
if isinstance(output_snr, str):
isok = False
nb_tsp = 0
pthbdbw = round(path_bandwidth*1e-9,2)
rosnr = ''
rsnr = ''
rsnrb = ''
br = ''
pw = ''
total_cost = ''
else:
isok = output_snr >= minosnr
nb_tsp = ceil(path_bandwidth / bit_rate)
pthbdbw = round(path_bandwidth*1e-9,2)
rosnr = round(output_osnr,2)
rsnr = round(output_snr,2)
rsnrb = round(output_snrbandwidth,2)
br = round(baud_rate*1e-9,2)
pw = round(lin2db(power)+30,2)
total_cost = nb_tsp * cost
mywriter.writerow((path_id,
source,
destination,
pthbdbw,
isok,
nb_tsp,
total_cost,
tsp,
mode,
rosnr,
rsnr,
rsnrb,
br,
pw,
pth
))
def compute_path_dsjctn(network, equipment, pathreqlist, disjunctions_list):
# pathreqlist is a list of Path_request objects
# disjunctions_list a list of Disjunction objects
# given a network, a list of requests with the set of disjunction features between
# request, the function computes the set of path satisfying : first the disjunction
# constraint and second the routing constraint if the request include an explicit
# set of elements to pass through.
# the algorithm used allows to specify disjunction for demands not sharing source or
# destination.
# a request might be declared as disjoint from several requests
# it is a iterative process:
# first computes a list of all shortest path (this may add computation time)
# second elaborate the set of path solution for each synchronization vector
# third select only the candidates that satisfy all synchronization vectors they belong to
# fourth apply route constraints : remove candidate path that do not satisfy the constraint
# fifth select the first candidate among the set of candidates.
# the example network used in comments has been added to the set of data tests files
# define the list to be returned
path_res_list = []
# all disjctn must be computed at once together to avoid blocking
# 1 1
# eg a----b-----c
# |1 |0.5 |1
# e----f--h--g
# 1 0.5 0.5
# if I have to compute a to g and a to h
# I must not compute a-b-f-h-g, otherwise there is no disjoint path remaining for a to h
# instead I should list all most disjoint path and select the one that have the less
# number of commonalities
# \ path abfh aefh abcgh
# \___cost 2 2.5 3.5
# path| cost
# abfhg| 2.5 x x x
# abcg | 3 x x
# aefhg| 3 x x x
# from this table abcg and aefh have no common links and should be preferred
# even they are not the shortest paths
# build the list of pathreqlist elements not concerned by disjunction
global_disjunctions_list = [e for d in disjunctions_list for e in d.disjunctions_req ]
pathreqlist_simple = [e for e in pathreqlist if e.request_id not in global_disjunctions_list]
pathreqlist_disjt = [e for e in pathreqlist if e.request_id in global_disjunctions_list]
# use a mirror class to record path and the corresponding requests
class Pth:
def __init__(self, req, pth, simplepth):
self.req = req
self.pth = pth
self.simplepth = simplepth
# step 1
# for each remaining request compute a set of simple path
allpaths = {}
rqs = {}
simple_rqs = {}
simple_rqs_reversed = {}
for pathreq in pathreqlist_disjt :
all_simp_pths = list(all_simple_paths(network,\
source=next(el for el in network.nodes() if el.uid == pathreq.source),\
target=next(el for el in network.nodes() if el.uid == pathreq.destination),\
cutoff=80))
# sort them in km length instead of hop
# all_simp_pths = sorted(all_simp_pths, key=lambda path: len(path))
all_simp_pths = sorted(all_simp_pths, key=lambda \
x: sum(network.get_edge_data(x[i],x[i+1])['weight'] for i in range(len(x)-2)))
# reversed direction paths required to check disjunction on both direction
all_simp_pths_reversed = []
for pth in all_simp_pths:
all_simp_pths_reversed.append(find_reversed_path(pth,network))
rqs[pathreq.request_id] = all_simp_pths
temp =[]
for p in all_simp_pths :
# build a short list representing each roadm+direction with the first item
# start enumeration at 1 to avoid Trx in the list
s = [e.uid for i,e in enumerate(p[1:-1]) \
if (isinstance(e,Roadm) | (isinstance(p[i],Roadm) ))]
temp.append(s)
# id(s) is unique even if path is the same: two objects with same
# path have two different ids
allpaths[id(s)] = Pth(pathreq,p,s)
simple_rqs[pathreq.request_id] = temp
temp =[]
for p in all_simp_pths_reversed :
# build a short list representing each roadm+direction with the first item
# start enumeration at 1 to avoid Trx in the list
temp.append([e.uid for i,e in enumerate(p[1:-1]) \
if (isinstance(e,Roadm) | (isinstance(p[i],Roadm) ))] )
simple_rqs_reversed[pathreq.request_id] = temp
# step 2
# for each set of requests that need to be disjoint
# select the disjoint path combination
candidates = {}
for d in disjunctions_list :
dlist = d.disjunctions_req.copy()
# each line of dpath is one combination of path that satisfies disjunction
dpath = []
for i,p in enumerate(simple_rqs[dlist[0]]):
dpath.append([p])
# allpaths[id(p)].d_id = d.disjunction_id
# in each loop, dpath is updated with a path for rq that satisfies
# disjunction with each path in dpath
# for example, assume set of requests in the vector (disjunction_list) is {rq1,rq2, rq3}
# rq1 p1: abfhg
# p2: aefhg
# p3: abcg
# rq2 p8: bf
# rq3 p4: abcgh
# p6: aefh
# p7: abfh
# initiate with rq1
# dpath = [[p1]
# [p2]
# [p3]]
# after first loop:
# dpath = [[p1 p8]
# [p3 p8]]
# since p2 and p8 are not disjoint
# after second loop:
# dpath = [ p3 p8 p6 ]
# since p1 and p4 are not disjoint
# p1 and p7 are not disjoint
# p3 and p4 are not disjoint
# p3 and p7 are not disjoint
for e1 in dlist[1:] :
temp = []
for j,p1 in enumerate(simple_rqs[e1]):
# allpaths[id(p1)].d_id = d.disjunction_id
# can use index j in simple_rqs_reversed because index
# of direct and reversed paths have been kept identical
p1_reversed = simple_rqs_reversed[e1][j]
# print(p1_reversed)
# print('\n\n')
for k,c in enumerate(dpath) :
# print(f' c: \t{c}')
temp2 = c.copy()
all_disjoint = 0
for p in c :
all_disjoint += isdisjoint(p1,p)+ isdisjoint(p1_reversed,p)
if all_disjoint ==0:
temp2.append(p1)
temp.append(temp2)
# print(f' coucou {e1}: \t{temp}')
dpath = temp
# print(dpath)
candidates[d.disjunction_id] = dpath
# for i in disjunctions_list :
# print(f'\n{candidates[i.disjunction_id]}')
# step 3
# now for each request, select the path that satisfies all disjunctions
# path must be in candidates[id] for all concerned ids
# for example, assume set of sync vectors (disjunction groups) is
# s1 = {rq1 rq2} s2 = {rq1 rq3}
# candidate[s1] = [[p1 p8]
# [p3 p8]]
# candidate[s2] = [[p3 p6]]
# for rq1 p3 should be preferred
for pathreq in pathreqlist_disjt:
concerned_d_id = [d.disjunction_id for d in disjunctions_list if pathreq.request_id in d.disjunctions_req]
# for each set of solution, verify that the same path is used for the same request
candidate_paths = simple_rqs[pathreq.request_id]
# print('coucou')
# print(pathreq.request_id)
for p in candidate_paths :
iscandidate = 0
for sol in concerned_d_id :
test = 1
# for each solution test if p is part of the solution
# if yes, then p can remain a candidate
for i,m in enumerate(candidates[sol]) :
if p in m:
if allpaths[id(m[m.index(p)])].req.request_id == pathreq.request_id :
test = 0
break
iscandidate += test
if iscandidate != 0:
for l in concerned_d_id :
for m in candidates[l] :
if p in m :
candidates[l].remove(m)
# for i in disjunctions_list :
# print(i.disjunction_id)
# print(f'\n{candidates[i.disjunction_id]}')
# step 4 apply route constraints : remove candidate path that do not satisfy the constraint
# only in the case of disjounction: the simple path is processed in request.compute_constrained_path
# TODO : keep a version without the loose constraint
for d in disjunctions_list :
temp = []
for j,sol in enumerate(candidates[d.disjunction_id]) :
testispartok = True
for i,p in enumerate(sol) :
# print(f'test {allpaths[id(p)].req.request_id}')
# print(f'length of route {len(allpaths[id(p)].req.nodes_list)}')
if allpaths[id(p)].req.nodes_list :
# if p does not containt the ordered list node, remove sol from the candidate
# except if this was the last solution: then check if the constraint is loose or not
if not ispart(allpaths[id(p)].req.nodes_list, p) :
# print(f'nb of solutions {len(temp)}')
if j < len(candidates[d.disjunction_id])-1 :
msg = f'removing {sol}'
logger.info(msg)
testispartok = False
#break
else:
if 'loose' in allpaths[id(p)].req.loose_list:
logger.info(f'Could not apply route constraint'+
f'{allpaths[id(p)].req.nodes_list} on request {allpaths[id(p)].req.request_id}')
else :
logger.info(f'removing last solution from candidate paths\n{sol}')
testispartok = False
if testispartok :
temp.append(sol)
candidates[d.disjunction_id] = temp
# step 5 select the first combination that works
pathreslist_disjoint = {}
for d in disjunctions_list :
test_sol = True
while test_sol:
# print('coucou')
if candidates[d.disjunction_id] :
for p in candidates[d.disjunction_id][0]:
if allpaths[id(p)].req in pathreqlist_disjt:
# print(f'selected path :{p} for req {allpaths[id(p)].req.request_id}')
pathreslist_disjoint[allpaths[id(p)].req] = allpaths[id(p)].pth
pathreqlist_disjt.remove(allpaths[id(p)].req)
candidates = remove_candidate(candidates, allpaths, allpaths[id(p)].req, p)
test_sol = False
else:
msg = f'No disjoint path found with added constraint'
logger.critical(msg)
print(f'{msg}\nComputation stopped.')
# TODO in this case: replay step 5 with the candidate without constraints
exit()
# for i in disjunctions_list :
# print(i.disjunction_id)
# print(f'\n{candidates[i.disjunction_id]}')
# list the results in the same order as initial pathreqlist
for req in pathreqlist :
req.nodes_list.append(req.destination)
# we assume that the destination is a strict constraint
req.loose_list.append('strict')
if req in pathreqlist_simple:
path_res_list.append(compute_constrained_path(network, req))
else:
path_res_list.append(pathreslist_disjoint[req])
return path_res_list
def isdisjoint(p1,p2) :
# returns 0 if disjoint
edge1 = list(pairwise(p1))
edge2 = list(pairwise(p2))
for e in edge1 :
if e in edge2 :
return 1
return 0
def find_reversed_path(p,network) :
# select of intermediate roadms and find the path between them
# note that this function may not give an exact result in case of multiple
# links between two adjacent nodes.
# TODO add some indication on elements to indicate from which other they
# are the reversed direction
reversed_roadm_path = list(reversed([e for e in p if isinstance (e,Roadm)]))
source = p[-1]
destination = p[0]
total_path = [source]
for node in reversed_roadm_path :
total_path.extend(dijkstra_path(network, source, node, weight = 'weight')[1:])
source = node
total_path.append(destination)
return total_path
def ispart(a,b) :
# the functions takes two paths a and b and retrns True
# if all a elements are part of b and in the same order
j = 0
for i, el in enumerate(a):
if el in b :
if b.index(el) >= j :
j = b.index(el)
else:
return False
else:
return False
return True
def remove_candidate(candidates, allpaths, rq, pth) :
# print(f'coucou {rq.request_id}')
for key, candidate in candidates.items() :
temp = candidate.copy()
for i,sol in enumerate(candidate) :
for p in sol :
if allpaths[id(p)].req.request_id == rq.request_id :
if id(p) != id(pth) :
temp.remove(sol)
break
candidates[key] = temp
return candidates
def compare_reqs(req1,req2,disjlist) :
dis1 = [d for d in disjlist if req1.request_id in d.disjunctions_req]
dis2 = [d for d in disjlist if req2.request_id in d.disjunctions_req]
same_disj = False
if dis1 and dis2 :
temp1 = []
for d in dis1:
temp1.extend(d.disjunctions_req)
temp1.remove(req1.request_id)
temp2 = []
for d in dis2:
temp2.extend(d.disjunctions_req)
temp2.remove(req2.request_id)
if set(temp1) == set(temp2) :
same_disj = True
elif not dis2 and not dis1:
same_disj = True
if req1.source == req2.source and \
req1.destination == req2.destination and \
req1.tsp == req2.tsp and \
req1.tsp_mode == req2.tsp_mode and \
req1.baud_rate == req2.baud_rate and \
req1.nodes_list == req2.nodes_list and \
req1.loose_list == req2.loose_list and \
req1.spacing == req2.spacing and \
req1.power == req2.power and \
req1.nb_channel == req2.nb_channel and \
req1.f_min == req2.f_min and \
req1.f_max == req2.f_max and \
req1.format == req2.format and \
req1.OSNR == req2.OSNR and \
req1.roll_off == req2.roll_off and \
same_disj :
return True
else:
return False
def requests_aggregation(pathreqlist,disjlist) :
# this function aggregates requests so that if several requests
# exist between same source and destination and with same transponder type
# todo maybe add conditions on mode ??, spacing ...
# currently if undefined takes the default values
local_list = pathreqlist.copy()
for req in pathreqlist:
for r in local_list :
if req.request_id != r.request_id and compare_reqs(req, r, disjlist):
# aggregate
r.path_bandwidth += req.path_bandwidth
temp_r_id = r.request_id
r.request_id = ' | '.join((r.request_id,req.request_id))
# remove request from list
local_list.remove(req)
# todo change also disjunction req with new demand
for d in disjlist :
if req.request_id in d.disjunctions_req :
d.disjunctions_req.remove(req.request_id)
d.disjunctions_req.append(r.request_id)
for d in disjlist :
if temp_r_id in d.disjunctions_req :
disjlist.remove(d)
break
return local_list, disjlist