mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-11-01 02:28:05 +00:00
See GitHub issue #368 The out_voa attenuation of the previous Edfa is currently not taken into account when calculating power target for an Edfa in gain mode. This makes the calculated gain target (in case of autodesign) for the following Edfa in the chain incorrect and also impacts automatic amplifier selection. Change-Id: Idc473762ccf7b021a0885c7ce20de1abb66eb075 Signed-off-by: Jonas Mårtensson <jonas.martensson@ri.se>
494 lines
20 KiB
Python
494 lines
20 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
'''
|
|
gnpy.core.network
|
|
=================
|
|
|
|
Working with networks which consist of network elements
|
|
'''
|
|
|
|
from operator import attrgetter
|
|
from gnpy.core import ansi_escapes, elements
|
|
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
|
|
from gnpy.core.utils import round2float, convert_length
|
|
from collections import namedtuple
|
|
|
|
|
|
def edfa_nf(gain_target, variety_type, equipment):
|
|
amp_params = equipment['Edfa'][variety_type]
|
|
amp = elements.Edfa(
|
|
uid='calc_NF',
|
|
params=amp_params.__dict__,
|
|
operational={
|
|
'gain_target': gain_target,
|
|
'tilt_target': 0
|
|
}
|
|
)
|
|
amp.pin_db = 0
|
|
amp.nch = 88
|
|
return amp._calc_nf(True)
|
|
|
|
|
|
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
|
|
"""amplifer selection algorithm
|
|
@Orange Jean-Luc Augé
|
|
"""
|
|
Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
|
|
TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
|
|
|
|
# for roadm restriction only: create a dict including not allowed for design amps
|
|
# because main use case is to have specific radm amp which are not allowed for ILA
|
|
# with the auto design
|
|
edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
|
|
if restrictions is None or name in restrictions}
|
|
|
|
pin = power_target - gain_target
|
|
|
|
# create 2 list of available amplifiers with relevant attributes for their selection
|
|
|
|
# edfa list with:
|
|
# extended gain min allowance of 3dB: could be parametrized, but a bit complex
|
|
# extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
|
|
# power attribut include power AND gain limitations
|
|
edfa_list = [Edfa_list(
|
|
variety=edfa_variety,
|
|
power=min(
|
|
pin
|
|
+ edfa.gain_flatmax
|
|
+ TARGET_EXTENDED_GAIN,
|
|
edfa.p_max
|
|
)
|
|
- power_target,
|
|
gain_min=gain_target + 3
|
|
- edfa.gain_min,
|
|
nf=edfa_nf(gain_target, edfa_variety, equipment))
|
|
for edfa_variety, edfa in edfa_dict.items()
|
|
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
|
|
|
|
# consider a Raman list because of different gain_min requirement:
|
|
# do not allow extended gain min for Raman
|
|
raman_list = [Edfa_list(
|
|
variety=edfa_variety,
|
|
power=min(
|
|
pin
|
|
+ edfa.gain_flatmax
|
|
+ TARGET_EXTENDED_GAIN,
|
|
edfa.p_max
|
|
)
|
|
- power_target,
|
|
gain_min=gain_target
|
|
- edfa.gain_min,
|
|
nf=edfa_nf(gain_target, edfa_variety, equipment))
|
|
for edfa_variety, edfa in edfa_dict.items()
|
|
if (edfa.allowed_for_design and edfa.raman)] \
|
|
if raman_allowed else []
|
|
|
|
# merge raman and edfa lists
|
|
amp_list = edfa_list + raman_list
|
|
|
|
# filter on min gain limitation:
|
|
acceptable_gain_min_list = [x for x in amp_list if x.gain_min > 0]
|
|
|
|
if len(acceptable_gain_min_list) < 1:
|
|
# do not take this empty list into account for the rest of the code
|
|
# but issue a warning to the user and do not consider Raman
|
|
# Raman below min gain should not be allowed because i is meant to be a design requirement
|
|
# and raman padding at the amplifier input is impossible!
|
|
|
|
if len(edfa_list) < 1:
|
|
raise ConfigurationError(f'auto_design could not find any amplifier \
|
|
to satisfy min gain requirement in node {uid} \
|
|
please increase span fiber padding')
|
|
else:
|
|
# TODO: convert to logging
|
|
print(
|
|
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain in node {uid} is below all available amplifiers min gain: \
|
|
amplifier input padding will be assumed, consider increase span fiber padding instead'
|
|
)
|
|
acceptable_gain_min_list = edfa_list
|
|
|
|
# filter on gain+power limitation:
|
|
# this list checks both the gain and the power requirement
|
|
# because of the way .power is calculated in the list
|
|
acceptable_power_list = [x for x in acceptable_gain_min_list if x.power > 0]
|
|
if len(acceptable_power_list) < 1:
|
|
# no amplifier satisfies the required power, so pick the highest power(s):
|
|
power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
|
|
# check and pick if other amplifiers may have a similar gain/power
|
|
# allow a 0.3dB power range
|
|
# this allows to chose an amplifier with a better NF subsequentely
|
|
acceptable_power_list = [x for x in acceptable_gain_min_list
|
|
if x.power - power_max > -0.3]
|
|
|
|
# gain and power requirements are resolved,
|
|
# =>chose the amp with the best NF among the acceptable ones:
|
|
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) # filter on NF
|
|
# check what are the gain and power limitations of this amp
|
|
power_reduction = round(min(selected_edfa.power, 0), 2)
|
|
if power_reduction < -0.5:
|
|
print(
|
|
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain and power in node {uid}\n \
|
|
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
|
|
a power reduction of {power_reduction} is applied\n'
|
|
)
|
|
|
|
return selected_edfa.variety, power_reduction
|
|
|
|
|
|
def target_power(network, node, equipment): # get_fiber_dp
|
|
if isinstance(node, elements.Roadm):
|
|
return 0
|
|
|
|
SPAN_LOSS_REF = 20
|
|
POWER_SLOPE = 0.3
|
|
dp_range = list(equipment['Span']['default'].delta_power_range_db)
|
|
node_loss = span_loss(network, node)
|
|
|
|
try:
|
|
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
|
|
dp = max(dp_range[0], dp)
|
|
dp = min(dp_range[1], dp)
|
|
except IndexError:
|
|
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
|
|
f'delta_power_range_db: [lower_bound, upper_bound, step]')
|
|
|
|
return dp
|
|
|
|
|
|
def prev_node_generator(network, node):
|
|
"""fused spans interest:
|
|
iterate over all predecessors while they are Fused or Fiber type"""
|
|
try:
|
|
prev_node = next(network.predecessors(node))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
|
|
# yield and re-iterate
|
|
if isinstance(prev_node, elements.Fused) or isinstance(node, elements.Fused):
|
|
yield prev_node
|
|
yield from prev_node_generator(network, prev_node)
|
|
else:
|
|
StopIteration
|
|
|
|
|
|
def next_node_generator(network, node):
|
|
"""fused spans interest:
|
|
iterate over all successors while they are Fused or Fiber type"""
|
|
try:
|
|
next_node = next(network.successors(node))
|
|
except StopIteration:
|
|
raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
|
|
# yield and re-iterate
|
|
if isinstance(next_node, elements.Fused) or isinstance(node, elements.Fused):
|
|
yield next_node
|
|
yield from next_node_generator(network, next_node)
|
|
else:
|
|
StopIteration
|
|
|
|
|
|
def span_loss(network, node):
|
|
"""Fused span interest:
|
|
return the total span loss of all the fibers spliced by a Fused node"""
|
|
loss = node.loss if node.passive else 0
|
|
try:
|
|
prev_node = next(network.predecessors(node))
|
|
if isinstance(prev_node, elements.Fused):
|
|
loss += sum(n.loss for n in prev_node_generator(network, node))
|
|
except StopIteration:
|
|
pass
|
|
try:
|
|
next_node = next(network.successors(node))
|
|
if isinstance(next_node, elements.Fused):
|
|
loss += sum(n.loss for n in next_node_generator(network, node))
|
|
except StopIteration:
|
|
pass
|
|
return loss
|
|
|
|
|
|
def find_first_node(network, node):
|
|
"""Fused node interest:
|
|
returns the 1st node at the origin of a succession of fused nodes
|
|
(aka no amp in between)"""
|
|
this_node = node
|
|
for this_node in prev_node_generator(network, node):
|
|
pass
|
|
return this_node
|
|
|
|
|
|
def find_last_node(network, node):
|
|
"""Fused node interest:
|
|
returns the last node in a succession of fused nodes
|
|
(aka no amp in between)"""
|
|
this_node = node
|
|
for this_node in next_node_generator(network, node):
|
|
pass
|
|
return this_node
|
|
|
|
|
|
def set_amplifier_voa(amp, power_target, power_mode):
|
|
VOA_MARGIN = 1 # do not maximize the VOA optimization
|
|
if amp.out_voa is None:
|
|
if power_mode and amp.params.out_voa_auto:
|
|
voa = min(amp.params.p_max - power_target,
|
|
amp.params.gain_flatmax - amp.effective_gain)
|
|
voa = max(round2float(voa, 0.5) - VOA_MARGIN, 0)
|
|
amp.delta_p = amp.delta_p + voa
|
|
amp.effective_gain = amp.effective_gain + voa
|
|
else:
|
|
voa = 0 # no output voa optimization in gain mode
|
|
amp.out_voa = voa
|
|
|
|
|
|
def set_egress_amplifier(network, this_node, equipment, pref_ch_db, pref_total_db):
|
|
""" this node can be a transceiver or a ROADM (same function called in both cases)
|
|
"""
|
|
power_mode = equipment['Span']['default'].power_mode
|
|
next_oms = (n for n in network.successors(this_node) if not isinstance(n, elements.Transceiver))
|
|
this_node_degree = {k: v for k, v in this_node.per_degree_pch_out_db.items()} if hasattr(this_node, 'per_degree_pch_out_db') else {}
|
|
for oms in next_oms:
|
|
# go through all the OMS departing from the ROADM
|
|
prev_node = this_node
|
|
node = oms
|
|
# if isinstance(next_node, elements.Fused): #support ROADM wo egress amp for metro applications
|
|
# node = find_last_node(next_node)
|
|
# next_node = next(n for n in network.successors(node))
|
|
# next_node = find_last_node(next_node)
|
|
if this_node_degree:
|
|
# find the target power on this degree
|
|
if node.uid in this_node_degree.keys():
|
|
prev_dp = this_node_degree[node.uid] - pref_ch_db
|
|
else:
|
|
# if no target power is defined on this degree use the global one
|
|
# if target_pch_out_db is not an attribute, then the element must be a transceiver
|
|
prev_dp = getattr(this_node.params, 'target_pch_out_db', 0) - pref_ch_db
|
|
this_node_degree[node.uid] = prev_dp
|
|
else:
|
|
# if no per degree target power is given use the global one
|
|
# if target_pch_out_db is not an attribute, then the element must be a transceiver
|
|
prev_dp = getattr(this_node.params, 'target_pch_out_db', 0) - pref_ch_db
|
|
this_node_degree[node.uid] = prev_dp
|
|
dp = prev_dp
|
|
prev_voa = 0
|
|
voa = 0
|
|
while not (isinstance(node, elements.Roadm) or isinstance(node, elements.Transceiver)):
|
|
# go through all nodes in the OMS (loop until next Roadm instance)
|
|
next_node = next(network.successors(node))
|
|
if isinstance(node, elements.Edfa):
|
|
node_loss = span_loss(network, prev_node)
|
|
voa = node.out_voa if node.out_voa else 0
|
|
if node.delta_p is None:
|
|
dp = target_power(network, next_node, equipment)
|
|
else:
|
|
dp = node.delta_p
|
|
if node.effective_gain is None or power_mode:
|
|
gain_target = node_loss + dp - prev_dp + prev_voa
|
|
else: # gain mode with effective_gain
|
|
gain_target = node.effective_gain
|
|
dp = prev_dp - node_loss - prev_voa + gain_target
|
|
|
|
power_target = pref_total_db + dp
|
|
|
|
if isinstance(prev_node, elements.Fiber):
|
|
max_fiber_lineic_loss_for_raman = \
|
|
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
|
|
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
|
|
else:
|
|
raman_allowed = False
|
|
|
|
# implementation of restrictions on roadm boosters
|
|
if isinstance(prev_node, elements.Roadm):
|
|
if prev_node.restrictions['booster_variety_list']:
|
|
restrictions = prev_node.restrictions['booster_variety_list']
|
|
else:
|
|
restrictions = None
|
|
elif isinstance(next_node, elements.Roadm):
|
|
# implementation of restrictions on roadm preamp
|
|
if next_node.restrictions['preamp_variety_list']:
|
|
restrictions = next_node.restrictions['preamp_variety_list']
|
|
else:
|
|
restrictions = None
|
|
else:
|
|
restrictions = None
|
|
|
|
if node.params.type_variety == '':
|
|
edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment, node.uid, restrictions)
|
|
extra_params = equipment['Edfa'][edfa_variety]
|
|
node.params.update_params(extra_params.__dict__)
|
|
dp += power_reduction
|
|
gain_target += power_reduction
|
|
elif node.params.raman and not raman_allowed:
|
|
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n but fiber lineic loss is above threshold\n')
|
|
|
|
node.delta_p = dp if power_mode else None
|
|
node.effective_gain = gain_target
|
|
set_amplifier_voa(node, power_target, power_mode)
|
|
|
|
prev_dp = dp
|
|
prev_voa = voa
|
|
prev_node = node
|
|
node = next_node
|
|
# print(f'{node.uid}')
|
|
|
|
if isinstance(this_node, elements.Roadm):
|
|
this_node.per_degree_pch_out_db = {k: v for k, v in this_node_degree.items()}
|
|
|
|
def add_egress_amplifier(network, node):
|
|
next_nodes = [n for n in network.successors(node)
|
|
if not (isinstance(n, elements.Transceiver) or isinstance(n, elements.Fused) or isinstance(n, elements.Edfa))]
|
|
# no amplification for fused spans or TRX
|
|
for i, next_node in enumerate(next_nodes):
|
|
network.remove_edge(node, next_node)
|
|
amp = elements.Edfa(
|
|
uid=f'Edfa{i}_{node.uid}',
|
|
params={},
|
|
metadata={
|
|
'location': {
|
|
'latitude': (node.lat + next_node.lat) / 2,
|
|
'longitude': (node.lng + next_node.lng) / 2,
|
|
'city': node.loc.city,
|
|
'region': node.loc.region,
|
|
}
|
|
},
|
|
operational={
|
|
'gain_target': None,
|
|
'tilt_target': 0,
|
|
})
|
|
network.add_node(amp)
|
|
if isinstance(node, elements.Fiber):
|
|
edgeweight = node.params.length
|
|
else:
|
|
edgeweight = 0.01
|
|
network.add_edge(node, amp, weight=edgeweight)
|
|
network.add_edge(amp, next_node, weight=0.01)
|
|
|
|
|
|
def calculate_new_length(fiber_length, bounds, target_length):
|
|
if fiber_length < bounds.stop:
|
|
return fiber_length, 1
|
|
|
|
n_spans2 = int(fiber_length // target_length)
|
|
n_spans1 = n_spans2 + 1
|
|
|
|
length1 = fiber_length / n_spans1
|
|
length2 = fiber_length / n_spans2
|
|
|
|
if (bounds.start <= length1 <= bounds.stop) and not(bounds.start <= length2 <= bounds.stop):
|
|
return (length1, n_spans1)
|
|
elif (bounds.start <= length2 <= bounds.stop) and not(bounds.start <= length1 <= bounds.stop):
|
|
return (length2, n_spans2)
|
|
elif target_length - length1 < length2 - target_length:
|
|
return (length1, n_spans1)
|
|
else:
|
|
return (length2, n_spans2)
|
|
|
|
|
|
def split_fiber(network, fiber, bounds, target_length, equipment):
|
|
new_length, n_spans = calculate_new_length(fiber.params.length, bounds, target_length)
|
|
if n_spans == 1:
|
|
return
|
|
|
|
try:
|
|
next_node = next(network.successors(fiber))
|
|
prev_node = next(network.predecessors(fiber))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
|
|
|
network.remove_node(fiber)
|
|
|
|
fiber.params.length = new_length
|
|
|
|
xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n + 1) / (n_spans + 1) for n in range(n_spans)]
|
|
ypos = [prev_node.lat + (next_node.lat - prev_node.lat) * (n + 1) / (n_spans + 1) for n in range(n_spans)]
|
|
for span, lng, lat in zip(range(n_spans), xpos, ypos):
|
|
new_span = elements.Fiber(uid=f'{fiber.uid}_({span+1}/{n_spans})',
|
|
type_variety=fiber.type_variety,
|
|
metadata={
|
|
'location': {
|
|
'latitude': lat,
|
|
'longitude': lng,
|
|
'city': fiber.loc.city,
|
|
'region': fiber.loc.region,
|
|
}
|
|
},
|
|
params=fiber.params.asdict())
|
|
if isinstance(prev_node, elements.Fiber):
|
|
edgeweight = prev_node.params.length
|
|
else:
|
|
edgeweight = 0.01
|
|
network.add_edge(prev_node, new_span, weight=edgeweight)
|
|
prev_node = new_span
|
|
if isinstance(prev_node, elements.Fiber):
|
|
edgeweight = prev_node.params.length
|
|
else:
|
|
edgeweight = 0.01
|
|
network.add_edge(prev_node, next_node, weight=edgeweight)
|
|
|
|
|
|
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
|
|
for fiber in fibers:
|
|
try:
|
|
next_node = next(network.successors(fiber))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
|
if fiber.params.con_in is None:
|
|
fiber.params.con_in = default_con_in
|
|
if fiber.params.con_out is None:
|
|
fiber.params.con_out = default_con_out
|
|
if not isinstance(next_node, elements.Fused):
|
|
fiber.params.con_out += EOL
|
|
|
|
|
|
def add_fiber_padding(network, fibers, padding):
|
|
"""last_fibers = (fiber for n in network.nodes()
|
|
if not (isinstance(n, elements.Fiber) or isinstance(n, elements.Fused))
|
|
for fiber in network.predecessors(n)
|
|
if isinstance(fiber, elements.Fiber))"""
|
|
for fiber in fibers:
|
|
try:
|
|
next_node = next(network.successors(fiber))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
|
if isinstance(next_node, elements.Fused):
|
|
continue
|
|
this_span_loss = span_loss(network, fiber)
|
|
if this_span_loss < padding:
|
|
# add a padding att_in at the input of the 1st fiber:
|
|
# address the case when several fibers are spliced together
|
|
first_fiber = find_first_node(network, fiber)
|
|
# in order to support no booster , fused might be placed
|
|
# just after a roadm: need to check that first_fiber is really a fiber
|
|
if isinstance(first_fiber, elements.Fiber):
|
|
first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss
|
|
|
|
|
|
def build_network(network, equipment, pref_ch_db, pref_total_db):
|
|
default_span_data = equipment['Span']['default']
|
|
max_length = int(convert_length(default_span_data.max_length, default_span_data.length_units))
|
|
min_length = max(int(default_span_data.padding / 0.2 * 1e3), 50_000)
|
|
bounds = range(min_length, max_length)
|
|
target_length = max(min_length, 90_000)
|
|
|
|
# set roadm loss for gain_mode before to build network
|
|
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
|
|
add_connector_loss(network, fibers, default_span_data.con_in, default_span_data.con_out, default_span_data.EOL)
|
|
add_fiber_padding(network, fibers, default_span_data.padding)
|
|
# don't group split fiber and add amp in the same loop
|
|
# =>for code clarity (at the expense of speed):
|
|
for fiber in fibers:
|
|
split_fiber(network, fiber, bounds, target_length, equipment)
|
|
|
|
amplified_nodes = [n for n in network.nodes() if isinstance(n, elements.Fiber) or isinstance(n, elements.Roadm)]
|
|
|
|
for node in amplified_nodes:
|
|
add_egress_amplifier(network, node)
|
|
|
|
roadms = [r for r in amplified_nodes if isinstance(r, elements.Roadm)]
|
|
for roadm in roadms:
|
|
set_egress_amplifier(network, roadm, equipment, pref_ch_db, pref_total_db)
|
|
|
|
# support older json input topology wo Roadms:
|
|
if len(roadms) == 0:
|
|
trx = [t for t in network.nodes() if isinstance(t, elements.Transceiver)]
|
|
for t in trx:
|
|
set_egress_amplifier(network, t, equipment, 0, pref_total_db)
|