mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 17:47:50 +00:00
942 lines
39 KiB
Python
942 lines
39 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
'''
|
|
gnpy.core.elements
|
|
==================
|
|
|
|
Standard network elements which propagate optical spectrum
|
|
|
|
A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
|
|
object and returns a copy with appropriate fields affected. This structure
|
|
represents spectral information that is "propogated" by this network element.
|
|
Network elements must have only a local "view" of the network and propogate
|
|
:class:`.info.SpectralInformation` using only this information. They should be independent and
|
|
self-contained.
|
|
|
|
Network elements MUST implement two attributes :py:attr:`uid` and :py:attr:`name` representing a
|
|
unique identifier and a printable name, and provide the :py:meth:`__call__` method taking a
|
|
:class:`SpectralInformation` as an input and returning another :class:`SpectralInformation`
|
|
instance as a result.
|
|
'''
|
|
|
|
from numpy import abs, arange, array, divide, errstate, ones
|
|
from numpy import interp, mean, pi, polyfit, polyval, sum, sqrt
|
|
from scipy.constants import h, c
|
|
from collections import namedtuple
|
|
|
|
from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
|
|
from gnpy.core.parameters import FiberParams, PumpParams
|
|
from gnpy.core.science_utils import NliSolver, RamanSolver, propagate_raman_fiber, _psi
|
|
|
|
|
|
class Location(namedtuple('Location', 'latitude longitude city region')):
|
|
def __new__(cls, latitude=0, longitude=0, city=None, region=None):
|
|
return super().__new__(cls, latitude, longitude, city, region)
|
|
|
|
|
|
class _Node:
|
|
'''Convenience class for providing common functionality of all network elements
|
|
|
|
This class is just an internal implementation detail; do **not** assume that all network elements
|
|
inherit from :class:`_Node`.
|
|
'''
|
|
def __init__(self, uid, name=None, params=None, metadata=None, operational=None, type_variety=None):
|
|
if name is None:
|
|
name = uid
|
|
self.uid, self.name = uid, name
|
|
if metadata is None:
|
|
metadata = {'location': {}}
|
|
if metadata and not isinstance(metadata.get('location'), Location):
|
|
metadata['location'] = Location(**metadata.pop('location', {}))
|
|
self.params, self.metadata, self.operational = params, metadata, operational
|
|
if type_variety:
|
|
self.type_variety = type_variety
|
|
|
|
@property
|
|
def coords(self):
|
|
return self.lng, self.lat
|
|
|
|
@property
|
|
def location(self):
|
|
return self.metadata['location']
|
|
loc = location
|
|
|
|
@property
|
|
def longitude(self):
|
|
return self.location.longitude
|
|
lng = longitude
|
|
|
|
@property
|
|
def latitude(self):
|
|
return self.location.latitude
|
|
lat = latitude
|
|
|
|
|
|
class Transceiver(_Node):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.osnr_ase_01nm = None
|
|
self.osnr_ase = None
|
|
self.osnr_nli = None
|
|
self.snr = None
|
|
self.passive = False
|
|
self.baud_rate = None
|
|
self.chromatic_dispersion = None
|
|
self.pmd = None
|
|
|
|
def _calc_cd(self, spectral_info):
|
|
""" Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
|
|
"""
|
|
self.chromatic_dispersion = [carrier.chromatic_dispersion * 1e3 for carrier in spectral_info.carriers]
|
|
|
|
def _calc_pmd(self, spectral_info):
|
|
"""Updates the Transceiver property with the PMD of the received channels. PMD in ps.
|
|
"""
|
|
self.pmd = [carrier.pmd*1e12 for carrier in spectral_info.carriers]
|
|
|
|
def _calc_snr(self, spectral_info):
|
|
with errstate(divide='ignore'):
|
|
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
|
|
ratio_01nm = [lin2db(12.5e9 / b_rate) for b_rate in self.baud_rate]
|
|
# set raw values to record original calculation, before update_snr()
|
|
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
|
|
for c in spectral_info.carriers]
|
|
self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
|
|
in zip(self.raw_osnr_ase, ratio_01nm)]
|
|
self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
|
|
for c in spectral_info.carriers]
|
|
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli + c.power.ase))
|
|
for c in spectral_info.carriers]
|
|
self.raw_snr_01nm = [snr - ratio for snr, ratio
|
|
in zip(self.raw_snr, ratio_01nm)]
|
|
|
|
self.osnr_ase = self.raw_osnr_ase
|
|
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
|
|
self.osnr_nli = self.raw_osnr_nli
|
|
self.snr = self.raw_snr
|
|
self.snr_01nm = self.raw_snr_01nm
|
|
|
|
def update_snr(self, *args):
|
|
"""
|
|
snr_added in 0.1nm
|
|
compute SNR penalties such as transponder Tx_osnr or Roadm add_drop_osnr
|
|
only applied in request.py / propagate on the last Trasceiver node of the path
|
|
all penalties are added in a single call because to avoid uncontrolled cumul
|
|
"""
|
|
# use raw_values so that the added SNR penalties are not cumulated
|
|
snr_added = 0
|
|
for s in args:
|
|
snr_added += db2lin(-s)
|
|
snr_added = -lin2db(snr_added)
|
|
self.osnr_ase = list(map(lambda x, y: snr_sum(x, y, snr_added),
|
|
self.raw_osnr_ase, self.baud_rate))
|
|
self.snr = list(map(lambda x, y: snr_sum(x, y, snr_added),
|
|
self.raw_snr, self.baud_rate))
|
|
self.osnr_ase_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
|
|
self.raw_osnr_ase_01nm))
|
|
self.snr_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
|
|
self.raw_snr_01nm))
|
|
|
|
@property
|
|
def to_json(self):
|
|
return {'uid': self.uid,
|
|
'type': type(self).__name__,
|
|
'metadata': {
|
|
'location': self.metadata['location']._asdict()
|
|
}
|
|
}
|
|
|
|
def __repr__(self):
|
|
return (f'{type(self).__name__}('
|
|
f'uid={self.uid!r}, '
|
|
f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
|
|
f'osnr_ase={self.osnr_ase!r}, '
|
|
f'osnr_nli={self.osnr_nli!r}, '
|
|
f'snr={self.snr!r}, '
|
|
f'chromatic_dispersion={self.chromatic_dispersion!r}, '
|
|
f'pmd={self.pmd!r})')
|
|
|
|
def __str__(self):
|
|
if self.snr is None or self.osnr_ase is None:
|
|
return f'{type(self).__name__} {self.uid}'
|
|
|
|
snr = round(mean(self.snr), 2)
|
|
osnr_ase = round(mean(self.osnr_ase), 2)
|
|
osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
|
|
snr_01nm = round(mean(self.snr_01nm), 2)
|
|
cd = mean(self.chromatic_dispersion)
|
|
pmd = mean(self.pmd)
|
|
|
|
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
|
|
|
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
|
|
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
|
|
f' SNR total (signal bw, dB): {snr:.2f}',
|
|
f' SNR total (0.1nm, dB): {snr_01nm:.2f}',
|
|
f' CD (ps/nm): {cd:.2f}',
|
|
f' PMD (ps): {pmd:.2f}'])
|
|
|
|
def __call__(self, spectral_info):
|
|
self._calc_snr(spectral_info)
|
|
self._calc_cd(spectral_info)
|
|
self._calc_pmd(spectral_info)
|
|
return spectral_info
|
|
|
|
|
|
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr pmd restrictions')
|
|
|
|
|
|
class Roadm(_Node):
|
|
def __init__(self, *args, params, **kwargs):
|
|
super().__init__(*args, params=RoadmParams(**params), **kwargs)
|
|
self.loss = 0 # auto-design interest
|
|
self.effective_loss = None
|
|
self.effective_pch_out_db = self.params.target_pch_out_db
|
|
self.passive = True
|
|
self.restrictions = self.params.restrictions
|
|
|
|
@property
|
|
def to_json(self):
|
|
return {'uid': self.uid,
|
|
'type': type(self).__name__,
|
|
'params': {
|
|
'target_pch_out_db': self.effective_pch_out_db,
|
|
'restrictions': self.restrictions
|
|
},
|
|
'metadata': {
|
|
'location': self.metadata['location']._asdict()
|
|
}
|
|
}
|
|
|
|
def __repr__(self):
|
|
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
|
|
|
|
def __str__(self):
|
|
if self.effective_loss is None:
|
|
return f'{type(self).__name__} {self.uid}'
|
|
|
|
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
|
f' effective loss (dB): {self.effective_loss:.2f}',
|
|
f' pch out (dBm): {self.effective_pch_out_db!r}'])
|
|
|
|
def propagate(self, pref, *carriers):
|
|
# pin_target and loss are read from eqpt_config.json['Roadm']
|
|
# all ingress channels in xpress are set to this power level
|
|
# but add channels are not, so we define an effective loss
|
|
# in the case of add channels
|
|
self.effective_pch_out_db = min(pref.p_spani, self.params.target_pch_out_db)
|
|
self.effective_loss = pref.p_spani - self.effective_pch_out_db
|
|
carriers_power = array([c.power.signal + c.power.nli + c.power.ase for c in carriers])
|
|
carriers_att = list(map(lambda x: lin2db(x * 1e3) - self.params.target_pch_out_db, carriers_power))
|
|
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default=0)
|
|
carriers_att = list(map(lambda x: db2lin(x + exceeding_att), carriers_att))
|
|
for carrier_att, carrier in zip(carriers_att, carriers):
|
|
pwr = carrier.power
|
|
pwr = pwr._replace(signal=pwr.signal / carrier_att,
|
|
nli=pwr.nli / carrier_att,
|
|
ase=pwr.ase / carrier_att)
|
|
pmd = sqrt(carrier.pmd**2 + self.params.pmd**2)
|
|
yield carrier._replace(power=pwr, pmd=pmd)
|
|
|
|
def update_pref(self, pref):
|
|
return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
|
|
|
|
def __call__(self, spectral_info):
|
|
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
|
|
pref = self.update_pref(spectral_info.pref)
|
|
return spectral_info._replace(carriers=carriers, pref=pref)
|
|
|
|
|
|
FusedParams = namedtuple('FusedParams', 'loss')
|
|
|
|
|
|
class Fused(_Node):
|
|
def __init__(self, *args, params=None, **kwargs):
|
|
if params is None:
|
|
# default loss value if not mentioned in loaded network json
|
|
params = {'loss': 1}
|
|
super().__init__(*args, params=FusedParams(**params), **kwargs)
|
|
self.loss = self.params.loss
|
|
self.passive = True
|
|
|
|
@property
|
|
def to_json(self):
|
|
return {'uid': self.uid,
|
|
'type': type(self).__name__,
|
|
'params': {
|
|
'loss': self.loss
|
|
},
|
|
'metadata': {
|
|
'location': self.metadata['location']._asdict()
|
|
}
|
|
}
|
|
|
|
def __repr__(self):
|
|
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
|
|
|
|
def __str__(self):
|
|
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
|
f' loss (dB): {self.loss:.2f}'])
|
|
|
|
def propagate(self, *carriers):
|
|
attenuation = db2lin(self.loss)
|
|
|
|
for carrier in carriers:
|
|
pwr = carrier.power
|
|
pwr = pwr._replace(signal=pwr.signal / attenuation,
|
|
nli=pwr.nli / attenuation,
|
|
ase=pwr.ase / attenuation)
|
|
yield carrier._replace(power=pwr)
|
|
|
|
def update_pref(self, pref):
|
|
return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
|
|
|
|
def __call__(self, spectral_info):
|
|
carriers = tuple(self.propagate(*spectral_info.carriers))
|
|
pref = self.update_pref(spectral_info.pref)
|
|
return spectral_info._replace(carriers=carriers, pref=pref)
|
|
|
|
|
|
class Fiber(_Node):
|
|
def __init__(self, *args, params=None, **kwargs):
|
|
if not params:
|
|
params = {}
|
|
super().__init__(*args, params=FiberParams(**params), **kwargs)
|
|
self.carriers_in = None
|
|
self.carriers_out = None
|
|
self.pch_out_db = None
|
|
self.nli_solver = NliSolver(self)
|
|
|
|
@property
|
|
def to_json(self):
|
|
return {'uid': self.uid,
|
|
'type': type(self).__name__,
|
|
'type_variety': self.type_variety,
|
|
'params': {
|
|
# have to specify each because namedtupple cannot be updated :(
|
|
'length': round(self.params.length * 1e-3, 6),
|
|
'loss_coef': self.params.loss_coef * 1e3,
|
|
'length_units': 'km',
|
|
'att_in': self.params.att_in,
|
|
'con_in': self.params.con_in,
|
|
'con_out': self.params.con_out
|
|
},
|
|
'metadata': {
|
|
'location': self.metadata['location']._asdict()
|
|
}
|
|
}
|
|
|
|
def __repr__(self):
|
|
return f'{type(self).__name__}(uid={self.uid!r}, ' \
|
|
f'length={round(self.params.length * 1e-3,1)!r}km, ' \
|
|
f'loss={round(self.loss,1)!r}dB)'
|
|
|
|
def __str__(self):
|
|
if self.pch_out_db is None:
|
|
return f'{type(self).__name__} {self.uid}'
|
|
|
|
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
|
f' type_variety: {self.type_variety}',
|
|
f' length (km): '
|
|
f'{round(self.params.length * 1e-3):.2f}',
|
|
f' pad att_in (dB): {self.params.att_in:.2f}',
|
|
f' total loss (dB): {self.loss:.2f}',
|
|
f' (includes conn loss (dB) in: {self.params.con_in:.2f} out: {self.params.con_out:.2f})',
|
|
f' (conn loss out includes EOL margin defined in eqpt_config.json)',
|
|
f' pch out (dBm): {self.pch_out_db!r}'])
|
|
|
|
@property
|
|
def fiber_loss(self):
|
|
"""Fiber loss in dB, not including padding attenuator"""
|
|
return self.params.loss_coef * self.params.length + self.params.con_in + self.params.con_out
|
|
|
|
@property
|
|
def loss(self):
|
|
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
|
|
return self.params.loss_coef * self.params.length + self.params.con_in + self.params.con_out + self.params.att_in
|
|
|
|
@property
|
|
def passive(self):
|
|
return True
|
|
|
|
def carriers(self, loc, attr):
|
|
"""retrieve carriers information
|
|
|
|
:param loc: (in, out) of the class element
|
|
:param attr: (ase, nli, signal, total) power information
|
|
"""
|
|
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
|
|
yield None
|
|
return
|
|
loc_attr = 'carriers_' + loc
|
|
for c in getattr(self, loc_attr):
|
|
if attr == 'total':
|
|
yield c.power.ase + c.power.nli + c.power.signal
|
|
else:
|
|
yield c.power._asdict().get(attr, None)
|
|
|
|
def alpha(self, frequencies):
|
|
"""It returns the values of the series expansion of attenuation coefficient alpha(f) for all f in frequencies
|
|
|
|
:param frequencies: frequencies of series expansion [Hz]
|
|
:return: alpha: power attenuation coefficient for f in frequencies [Neper/m]
|
|
"""
|
|
if type(self.params.loss_coef) == dict:
|
|
alpha = interp(frequencies, self.params.f_loss_ref, self.params.lin_loss_exp)
|
|
else:
|
|
alpha = self.params.lin_loss_exp * ones(frequencies.shape)
|
|
|
|
return alpha
|
|
|
|
def alpha0(self, f_ref=193.5e12):
|
|
"""It returns the zero element of the series expansion of attenuation coefficient alpha(f) in the
|
|
reference frequency f_ref
|
|
|
|
:param f_ref: reference frequency of series expansion [Hz]
|
|
:return: alpha0: power attenuation coefficient in f_ref [Neper/m]
|
|
"""
|
|
return self.alpha(f_ref * ones(1))[0]
|
|
|
|
def chromatic_dispersion(self, freq=193.5e12):
|
|
"""Returns accumulated chromatic dispersion (CD).
|
|
|
|
:param freq: the frequency at which the chromatic dispersion is computed
|
|
:return: chromatic dispersion: the accumulated dispersion [s/m]
|
|
"""
|
|
beta2 = self.params.beta2
|
|
beta3 = self.params.beta3
|
|
ref_f = self.params.ref_frequency
|
|
length = self.params.length
|
|
beta = beta2 + 2 * pi * beta3 * (freq - ref_f)
|
|
dispersion = -beta * 2 * pi * ref_f**2 / c
|
|
return dispersion * length
|
|
|
|
@property
|
|
def pmd(self):
|
|
"""differential group delay (PMD) [s]"""
|
|
return self.params.pmd_coef * sqrt(self.params.length)
|
|
|
|
def _gn_analytic(self, carrier, *carriers):
|
|
"""Computes the nonlinear interference power on a single carrier.
|
|
The method uses eq. 120 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__.
|
|
|
|
:param carrier: the signal under analysis
|
|
:param carriers: the full WDM comb
|
|
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
|
|
"""
|
|
|
|
g_nli = 0
|
|
for interfering_carrier in carriers:
|
|
psi = _psi(carrier, interfering_carrier, beta2=self.params.beta2,
|
|
asymptotic_length=self.params.asymptotic_length)
|
|
g_nli += (interfering_carrier.power.signal / interfering_carrier.baud_rate)**2 \
|
|
* (carrier.power.signal / carrier.baud_rate) * psi
|
|
|
|
g_nli *= (16 / 27) * (self.params.gamma * self.params.effective_length)**2 \
|
|
/ (2 * pi * abs(self.params.beta2) * self.params.asymptotic_length)
|
|
|
|
carrier_nli = carrier.baud_rate * g_nli
|
|
return carrier_nli
|
|
|
|
def propagate(self, *carriers):
|
|
r"""Generator that computes the fiber propagation: attenuation, non-linear interference generation, CD
|
|
accumulation and PMD accumulation.
|
|
|
|
:param: \*carriers: the channels at the input of the fiber
|
|
:yield: carrier: the next channel at the output of the fiber
|
|
"""
|
|
|
|
# apply connector_att_in on all carriers before computing gn analytics premiere partie pas bonne
|
|
attenuation = db2lin(self.params.con_in + self.params.att_in)
|
|
|
|
chan = []
|
|
for carrier in carriers:
|
|
pwr = carrier.power
|
|
pwr = pwr._replace(signal=pwr.signal / attenuation,
|
|
nli=pwr.nli / attenuation,
|
|
ase=pwr.ase / attenuation)
|
|
carrier = carrier._replace(power=pwr)
|
|
chan.append(carrier)
|
|
|
|
carriers = tuple(f for f in chan)
|
|
|
|
# propagate in the fiber and apply attenuation out
|
|
attenuation = db2lin(self.params.con_out)
|
|
for carrier in carriers:
|
|
pwr = carrier.power
|
|
carrier_nli = self._gn_analytic(carrier, *carriers)
|
|
pwr = pwr._replace(signal=pwr.signal / self.params.lin_attenuation / attenuation,
|
|
nli=(pwr.nli + carrier_nli) / self.params.lin_attenuation / attenuation,
|
|
ase=pwr.ase / self.params.lin_attenuation / attenuation)
|
|
chromatic_dispersion = carrier.chromatic_dispersion + self.chromatic_dispersion(carrier.frequency)
|
|
pmd = sqrt(carrier.pmd**2 + self.pmd**2)
|
|
yield carrier._replace(power=pwr, chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
|
|
|
def update_pref(self, pref):
|
|
self.pch_out_db = round(pref.p_spani - self.loss, 2)
|
|
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
|
|
|
|
def __call__(self, spectral_info):
|
|
self.carriers_in = spectral_info.carriers
|
|
carriers = tuple(self.propagate(*spectral_info.carriers))
|
|
pref = self.update_pref(spectral_info.pref)
|
|
self.carriers_out = carriers
|
|
return spectral_info._replace(carriers=carriers, pref=pref)
|
|
|
|
|
|
class RamanFiber(Fiber):
|
|
def __init__(self, *args, params=None, **kwargs):
|
|
super().__init__(*args, params=params, **kwargs)
|
|
if self.operational and 'raman_pumps' in self.operational:
|
|
self.raman_pumps = tuple(PumpParams(p['power'], p['frequency'], p['propagation_direction'])
|
|
for p in self.operational['raman_pumps'])
|
|
else:
|
|
self.raman_pumps = None
|
|
self.raman_solver = RamanSolver(self)
|
|
|
|
def update_pref(self, pref, *carriers):
|
|
pch_out_db = lin2db(mean([carrier.power.signal for carrier in carriers])) + 30
|
|
self.pch_out_db = round(pch_out_db, 2)
|
|
return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
|
|
|
|
def __call__(self, spectral_info):
|
|
self.carriers_in = spectral_info.carriers
|
|
carriers = tuple(self.propagate(*spectral_info.carriers))
|
|
pref = self.update_pref(spectral_info.pref, *carriers)
|
|
self.carriers_out = carriers
|
|
return spectral_info._replace(carriers=carriers, pref=pref)
|
|
|
|
def propagate(self, *carriers):
|
|
for propagated_carrier in propagate_raman_fiber(self, *carriers):
|
|
chromatic_dispersion = propagated_carrier.chromatic_dispersion + \
|
|
self.chromatic_dispersion(propagated_carrier.frequency)
|
|
pmd = sqrt(propagated_carrier.pmd**2 + self.pmd**2)
|
|
propagated_carrier = propagated_carrier._replace(chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
|
yield propagated_carrier
|
|
|
|
|
|
class EdfaParams:
|
|
def __init__(self, **params):
|
|
self.update_params(params)
|
|
if params == {}:
|
|
self.type_variety = ''
|
|
self.type_def = ''
|
|
# self.gain_flatmax = 0
|
|
# self.gain_min = 0
|
|
# self.p_max = 0
|
|
# self.nf_model = None
|
|
# self.nf_fit_coeff = None
|
|
# self.nf_ripple = None
|
|
# self.dgt = None
|
|
# self.gain_ripple = None
|
|
# self.out_voa_auto = False
|
|
# self.allowed_for_design = None
|
|
|
|
def update_params(self, kwargs):
|
|
for k, v in kwargs.items():
|
|
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
|
|
|
|
|
|
class EdfaOperational:
|
|
default_values = {
|
|
'gain_target': None,
|
|
'delta_p': None,
|
|
'out_voa': None,
|
|
'tilt_target': 0
|
|
}
|
|
|
|
def __init__(self, **operational):
|
|
self.update_attr(operational)
|
|
|
|
def update_attr(self, kwargs):
|
|
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
|
|
for k, v in self.default_values.items():
|
|
setattr(self, k, clean_kwargs.get(k, v))
|
|
|
|
def __repr__(self):
|
|
return (f'{type(self).__name__}('
|
|
f'gain_target={self.gain_target!r}, '
|
|
f'tilt_target={self.tilt_target!r})')
|
|
|
|
|
|
class Edfa(_Node):
|
|
def __init__(self, *args, params=None, operational=None, **kwargs):
|
|
if params is None:
|
|
params = {}
|
|
if operational is None:
|
|
operational = {}
|
|
super().__init__(
|
|
*args,
|
|
params=EdfaParams(**params),
|
|
operational=EdfaOperational(**operational),
|
|
**kwargs
|
|
)
|
|
self.interpol_dgt = None # interpolated dynamic gain tilt
|
|
self.interpol_gain_ripple = None # gain ripple
|
|
self.interpol_nf_ripple = None # nf_ripple
|
|
self.channel_freq = None # SI channel frequencies
|
|
# nf, gprofile, pin and pout attributes are set by interpol_params
|
|
self.nf = None # dB edfa nf at operational.gain_target
|
|
self.gprofile = None
|
|
self.pin_db = None
|
|
self.nch = None
|
|
self.pout_db = None
|
|
self.target_pch_out_db = None
|
|
self.effective_pch_out_db = None
|
|
self.passive = False
|
|
self.att_in = None
|
|
self.carriers_in = None
|
|
self.carriers_out = None
|
|
self.effective_gain = self.operational.gain_target
|
|
self.delta_p = self.operational.delta_p # delta P with Pref (power swwep) in power mode
|
|
self.tilt_target = self.operational.tilt_target
|
|
self.out_voa = self.operational.out_voa
|
|
|
|
@property
|
|
def to_json(self):
|
|
return {'uid': self.uid,
|
|
'type': type(self).__name__,
|
|
'type_variety': self.params.type_variety,
|
|
'operational': {
|
|
'gain_target': self.effective_gain,
|
|
'delta_p': self.delta_p,
|
|
'tilt_target': self.tilt_target,
|
|
'out_voa': self.out_voa
|
|
},
|
|
'metadata': {
|
|
'location': self.metadata['location']._asdict()
|
|
}
|
|
}
|
|
|
|
def __repr__(self):
|
|
return (f'{type(self).__name__}(uid={self.uid!r}, '
|
|
f'type_variety={self.params.type_variety!r}, '
|
|
f'interpol_dgt={self.interpol_dgt!r}, '
|
|
f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
|
|
f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
|
|
f'channel_freq={self.channel_freq!r}, '
|
|
f'nf={self.nf!r}, '
|
|
f'gprofile={self.gprofile!r}, '
|
|
f'pin_db={self.pin_db!r}, '
|
|
f'pout_db={self.pout_db!r})')
|
|
|
|
def __str__(self):
|
|
if self.pin_db is None or self.pout_db is None:
|
|
return f'{type(self).__name__} {self.uid}'
|
|
nf = mean(self.nf)
|
|
return '\n'.join([f'{type(self).__name__} {self.uid}',
|
|
f' type_variety: {self.params.type_variety}',
|
|
f' effective gain(dB): {self.effective_gain:.2f}',
|
|
f' (before att_in and before output VOA)',
|
|
f' noise figure (dB): {nf:.2f}',
|
|
f' (including att_in)',
|
|
f' pad att_in (dB): {self.att_in:.2f}',
|
|
f' Power In (dBm): {self.pin_db:.2f}',
|
|
f' Power Out (dBm): {self.pout_db:.2f}',
|
|
f' Delta_P (dB): {self.delta_p!r}',
|
|
f' target pch (dBm): {self.target_pch_out_db!r}',
|
|
f' effective pch (dBm): {self.effective_pch_out_db!r}',
|
|
f' output VOA (dB): {self.out_voa:.2f}'])
|
|
|
|
def carriers(self, loc, attr):
|
|
"""retrieve carriers information
|
|
|
|
:param loc: (in, out) of the class element
|
|
:param attr: (ase, nli, signal, total) power information
|
|
"""
|
|
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
|
|
yield None
|
|
return
|
|
loc_attr = 'carriers_' + loc
|
|
for c in getattr(self, loc_attr):
|
|
if attr == 'total':
|
|
yield c.power.ase + c.power.nli + c.power.signal
|
|
else:
|
|
yield c.power._asdict().get(attr, None)
|
|
|
|
def interpol_params(self, frequencies, pin, baud_rates, pref):
|
|
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
|
|
"""
|
|
# TODO|jla: read amplifier actual frequencies from additional params in json
|
|
self.channel_freq = frequencies
|
|
|
|
amplifier_freq = arrange_frequencies(len(self.params.dgt), self.params.f_min, self.params.f_max) # Hz
|
|
self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
|
|
|
|
amplifier_freq = arrange_frequencies(len(self.params.gain_ripple), self.params.f_min, self.params.f_max) # Hz
|
|
self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
|
|
|
|
amplifier_freq = arrange_frequencies(len(self.params.nf_ripple), self.params.f_min, self.params.f_max) # Hz
|
|
self.interpol_nf_ripple = interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
|
|
|
|
self.nch = frequencies.size
|
|
self.pin_db = lin2db(sum(pin * 1e3))
|
|
|
|
"""in power mode: delta_p is defined and can be used to calculate the power target
|
|
This power target is used calculate the amplifier gain"""
|
|
if self.delta_p is not None:
|
|
self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
|
|
self.effective_gain = self.target_pch_out_db - pref.p_spani
|
|
|
|
"""check power saturation and correct effective gain & power accordingly:"""
|
|
self.effective_gain = min(
|
|
self.effective_gain,
|
|
self.params.p_max - (pref.p_spani + pref.neq_ch)
|
|
)
|
|
#print(self.uid, self.effective_gain, self.operational.gain_target)
|
|
self.effective_pch_out_db = round(pref.p_spani + self.effective_gain, 2)
|
|
|
|
"""check power saturation and correct target_gain accordingly:"""
|
|
#print(self.uid, self.effective_gain, self.pin_db, pref.p_spani)
|
|
self.nf = self._calc_nf()
|
|
self.gprofile = self._gain_profile(pin)
|
|
|
|
pout = (pin + self.noise_profile(baud_rates)) * db2lin(self.gprofile)
|
|
self.pout_db = lin2db(sum(pout * 1e3))
|
|
# ase & nli are only calculated in signal bandwidth
|
|
# pout_db is not the absolute full output power (negligible if sufficient channels)
|
|
|
|
def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
|
|
# if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax
|
|
#gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
|
|
pad = max(gain_min - gain_target, 0)
|
|
gain_target += pad
|
|
dg = max(gain_flatmax - gain_target, 0)
|
|
if type_def == 'variable_gain':
|
|
g1a = gain_target - nf_model.delta_p - dg
|
|
nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2) / db2lin(g1a))
|
|
elif type_def == 'fixed_gain':
|
|
nf_avg = nf_model.nf0
|
|
elif type_def == 'openroadm':
|
|
pin_ch = self.pin_db - lin2db(self.nch)
|
|
# model OSNR = f(Pin)
|
|
nf_avg = pin_ch - polyval(nf_model.nf_coef, pin_ch) + 58
|
|
elif type_def == 'advanced_model':
|
|
nf_avg = polyval(nf_fit_coeff, -dg)
|
|
else:
|
|
assert False, "Unrecognized amplifier type, this should have been checked by the JSON loader"
|
|
return nf_avg + pad, pad
|
|
|
|
def _calc_nf(self, avg=False):
|
|
"""nf calculation based on 2 models: self.params.nf_model.enabled from json import:
|
|
True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
|
|
False => polynomial fit based on self.params.nf_fit_coeff"""
|
|
# gain_min > gain_target TBD:
|
|
if self.params.type_def == 'dual_stage':
|
|
g1 = self.params.preamp_gain_flatmax
|
|
g2 = self.effective_gain - g1
|
|
nf1_avg, pad = self._nf(self.params.preamp_type_def,
|
|
self.params.preamp_nf_model,
|
|
self.params.preamp_nf_fit_coeff,
|
|
self.params.preamp_gain_min,
|
|
self.params.preamp_gain_flatmax,
|
|
g1)
|
|
# no padding expected for the 1stage because g1 = gain_max
|
|
nf2_avg, pad = self._nf(self.params.booster_type_def,
|
|
self.params.booster_nf_model,
|
|
self.params.booster_nf_fit_coeff,
|
|
self.params.booster_gain_min,
|
|
self.params.booster_gain_flatmax,
|
|
g2)
|
|
nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg - g1))
|
|
# no padding expected for the 1stage because g1 = gain_max
|
|
pad = 0
|
|
else:
|
|
nf_avg, pad = self._nf(self.params.type_def,
|
|
self.params.nf_model,
|
|
self.params.nf_fit_coeff,
|
|
self.params.gain_min,
|
|
self.params.gain_flatmax,
|
|
self.effective_gain)
|
|
|
|
self.att_in = pad # not used to attenuate carriers, only used in _repr_ and _str_
|
|
if avg:
|
|
return nf_avg
|
|
else:
|
|
return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
|
|
|
|
def noise_profile(self, df):
|
|
"""noise_profile(bw) computes amplifier ASE (W) in signal bandwidth (Hz)
|
|
|
|
Noise is calculated at amplifier input
|
|
|
|
:bw: signal bandwidth = baud rate in Hz
|
|
:type bw: float
|
|
|
|
:return: the asepower in W in the signal bandwidth bw for 96 channels
|
|
:return type: numpy array of float
|
|
|
|
ASE power using per channel gain profile inputs:
|
|
|
|
NF_dB - Noise figure in dB, vector of length number of channels or
|
|
spectral slices
|
|
G_dB - Actual gain calculated for the EDFA, vector of length number of
|
|
channels or spectral slices
|
|
ffs - Center frequency grid of the channels or spectral slices in
|
|
THz, vector of length number of channels or spectral slices
|
|
dF - width of each channel or spectral slice in THz,
|
|
vector of length number of channels or spectral slices
|
|
|
|
OUTPUT:
|
|
|
|
ase_dBm - ase in dBm per channel or spectral slice
|
|
|
|
NOTE:
|
|
|
|
The output is the total ASE in the channel or spectral slice. For
|
|
50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
|
|
in 0.1nm, subtract 6dB.
|
|
|
|
ONSR is usually quoted as channel power divided by
|
|
the ASE power in 0.1nm RBW, regardless of the width of the actual
|
|
channel. This is a historical convention from the days when optical
|
|
signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
|
|
resolution of the OSAs that were used to measure spectral power which
|
|
were set to 0.1nm resolution for convenience. Moving forward into
|
|
flexible grid and high baud rate signals, it may be convenient to begin
|
|
quoting power spectral density in the same BW for both signal and ASE,
|
|
e.g. 12.5GHz."""
|
|
|
|
ase = h * df * self.channel_freq * db2lin(self.nf) # W
|
|
return ase # in W at amplifier input
|
|
|
|
def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
|
|
"""
|
|
Pin : input power / channel in W
|
|
|
|
:param gain_ripple: design flat gain
|
|
:param dgt: design gain tilt
|
|
:param Pin: total input power in W
|
|
:param gp: Average gain setpoint in dB units (provisioned gain)
|
|
:param gtp: gain tilt setting (provisioned tilt)
|
|
:type gain_ripple: numpy.ndarray
|
|
:type dgt: numpy.ndarray
|
|
:type Pin: numpy.ndarray
|
|
:type gp: float
|
|
:type gtp: float
|
|
:return: gain profile in dBm, per channel or spectral slice
|
|
:rtype: numpy.ndarray
|
|
|
|
Checking of output power clamping is implemented in interpol_params().
|
|
|
|
|
|
Based on:
|
|
|
|
R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
|
|
gain tilt technique", Journal of Lightwave Technology, Vol. 18,
|
|
Iss. 3, Pp. 343-347, 2000.
|
|
|
|
Ported from Matlab version written by David Boerges at Ciena.
|
|
"""
|
|
|
|
# TODO|jla: check what param should be used (currently length(dgt))
|
|
if len(self.interpol_dgt) == 1:
|
|
return array([self.effective_gain])
|
|
|
|
nb_channel = arange(len(self.interpol_dgt))
|
|
|
|
# TODO|jla: find a way to use these or lose them. Primarily we should have
|
|
# a way to determine if exceeding the gain or output power of the amp
|
|
tot_in_power_db = self.pin_db # Pin in W
|
|
|
|
# linear fit to get the
|
|
p = polyfit(nb_channel, self.interpol_dgt, 1)
|
|
dgt_slope = p[0]
|
|
|
|
# Calculate the target slope - currently assumes equal spaced channels
|
|
# TODO|jla: support arbitrary channel spacing
|
|
targ_slope = self.tilt_target / (len(nb_channel) - 1)
|
|
|
|
# first estimate of DGT scaling
|
|
if abs(dgt_slope) > 0.001: # check for zero value due to flat dgt
|
|
dgts1 = targ_slope / dgt_slope
|
|
else:
|
|
dgts1 = 0
|
|
|
|
# when simple_opt is true, make 2 attempts to compute gain and
|
|
# the internal voa value. This is currently here to provide direct
|
|
# comparison with original Matlab code. Will be removed.
|
|
# TODO|jla: replace with loop
|
|
|
|
if not simple_opt:
|
|
return
|
|
|
|
# first estimate of Er gain & VOA loss
|
|
g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
|
|
+ array(self.interpol_dgt) * dgts1
|
|
voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
|
|
|
|
# second estimate of amp ch gain using the channel input profile
|
|
g2nd = g1st - voa
|
|
|
|
pout_db = lin2db(sum(pin * 1e3 * db2lin(g2nd)))
|
|
dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
|
|
|
|
# center estimate of amp ch gain
|
|
xcent = dgts2
|
|
gcent = g1st - voa + array(self.interpol_dgt) * xcent
|
|
pout_db = lin2db(sum(pin * 1e3 * db2lin(gcent)))
|
|
gavg_cent = pout_db - tot_in_power_db
|
|
|
|
# Lower estimate of amp ch gain
|
|
deltax = max(g1st) - min(g1st)
|
|
# if no ripple deltax = 0 and xlow = xcent: div 0
|
|
# TODO|jla: add check for flat gain response
|
|
if abs(deltax) <= 0.05: # not enough ripple to consider calculation
|
|
return g1st - voa
|
|
|
|
xlow = dgts2 - deltax
|
|
glow = g1st - voa + array(self.interpol_dgt) * xlow
|
|
pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
|
|
gavg_low = pout_db - tot_in_power_db
|
|
|
|
# upper gain estimate
|
|
xhigh = dgts2 + deltax
|
|
ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
|
|
pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
|
|
gavg_high = pout_db - tot_in_power_db
|
|
|
|
# compute slope
|
|
slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
|
|
slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
|
|
|
|
if abs(self.effective_gain - gavg_cent) <= err_tolerance:
|
|
dgts3 = xcent
|
|
elif self.effective_gain < gavg_cent:
|
|
dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
|
|
else:
|
|
dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
|
|
|
|
return g1st - voa + array(self.interpol_dgt) * dgts3
|
|
|
|
def propagate(self, pref, *carriers):
|
|
"""add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
|
|
pin = array([c.power.signal + c.power.nli + c.power.ase for c in carriers]) # pin in W
|
|
freq = array([c.frequency for c in carriers])
|
|
brate = array([c.baud_rate for c in carriers])
|
|
# interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
|
|
self.interpol_params(freq, pin, brate, pref)
|
|
|
|
gains = db2lin(self.gprofile)
|
|
carrier_ases = self.noise_profile(brate)
|
|
att = db2lin(self.out_voa)
|
|
|
|
for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
|
|
pwr = carrier.power
|
|
pwr = pwr._replace(signal=pwr.signal * gain / att,
|
|
nli=pwr.nli * gain / att,
|
|
ase=(pwr.ase + carrier_ase) * gain / att)
|
|
yield carrier._replace(power=pwr)
|
|
|
|
def update_pref(self, pref):
|
|
return pref._replace(p_span0=pref.p_span0,
|
|
p_spani=pref.p_spani + self.effective_gain - self.out_voa)
|
|
|
|
def __call__(self, spectral_info):
|
|
self.carriers_in = spectral_info.carriers
|
|
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
|
|
pref = self.update_pref(spectral_info.pref)
|
|
self.carriers_out = carriers
|
|
return spectral_info._replace(carriers=carriers, pref=pref)
|