mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 17:47:50 +00:00
572 lines
24 KiB
Python
572 lines
24 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
'''
|
|
gnpy.core.network
|
|
=================
|
|
|
|
This module contains functions for constructing networks of network elements.
|
|
'''
|
|
|
|
from gnpy.core.convert import convert_file
|
|
from networkx import DiGraph
|
|
from numpy import arange
|
|
from scipy.interpolate import interp1d
|
|
from logging import getLogger
|
|
from os import path
|
|
from operator import itemgetter, attrgetter
|
|
from gnpy.core import elements
|
|
from gnpy.core.elements import Fiber, Edfa, Transceiver, Roadm, Fused, RamanFiber
|
|
from gnpy.core.equipment import edfa_nf
|
|
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
|
|
from gnpy.core.units import UNITS
|
|
from gnpy.core.utils import (load_json, save_json, round2float, db2lin,
|
|
merge_amplifier_restrictions)
|
|
from gnpy.core.science_utils import SimParams
|
|
from collections import namedtuple
|
|
|
|
logger = getLogger(__name__)
|
|
|
|
def load_network(filename, equipment, name_matching = False):
|
|
json_filename = ''
|
|
if filename.suffix.lower() == '.xls':
|
|
logger.info('Automatically generating topology JSON file')
|
|
json_filename = convert_file(filename, name_matching)
|
|
elif filename.suffix.lower() == '.json':
|
|
json_filename = filename
|
|
else:
|
|
raise ValueError(f'unsuported topology filename extension {filename.suffix.lower()}')
|
|
json_data = load_json(json_filename)
|
|
return network_from_json(json_data, equipment)
|
|
|
|
def save_network(filename, network):
|
|
filename_output = path.splitext(filename)[0] + '_auto_design.json'
|
|
json_data = network_to_json(network)
|
|
save_json(json_data, filename_output)
|
|
|
|
def network_from_json(json_data, equipment):
|
|
# NOTE|dutc: we could use the following, but it would tie our data format
|
|
# too closely to the graph library
|
|
# from networkx import node_link_graph
|
|
g = DiGraph()
|
|
for el_config in json_data['elements']:
|
|
typ = el_config.pop('type')
|
|
variety = el_config.pop('type_variety', 'default')
|
|
if typ in equipment and variety in equipment[typ]:
|
|
extra_params = equipment[typ][variety]
|
|
temp = el_config.setdefault('params', {})
|
|
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
|
|
el_config['params'] = temp
|
|
elif typ in ['Edfa', 'Fiber']: # catch it now because the code will crash later!
|
|
raise ConfigurationError(f'The {typ} of variety type {variety} was not recognized:'
|
|
'\nplease check it is properly defined in the eqpt_config json file')
|
|
cls = getattr(elements, typ)
|
|
el = cls(**el_config)
|
|
g.add_node(el)
|
|
|
|
nodes = {k.uid: k for k in g.nodes()}
|
|
|
|
for cx in json_data['connections']:
|
|
from_node, to_node = cx['from_node'], cx['to_node']
|
|
try:
|
|
if isinstance(nodes[from_node], Fiber):
|
|
edge_length = nodes[from_node].params.length
|
|
else:
|
|
edge_length = 0.01
|
|
g.add_edge(nodes[from_node], nodes[to_node], weight = edge_length)
|
|
except KeyError:
|
|
raise NetworkTopologyError(f'can not find {from_node} or {to_node} defined in {cx}')
|
|
|
|
return g
|
|
|
|
def network_to_json(network):
|
|
data = {
|
|
'elements': [n.to_json for n in network]
|
|
}
|
|
connections = {
|
|
'connections': [{"from_node": n.uid,
|
|
"to_node": next_n.uid}
|
|
for n in network
|
|
for next_n in network.successors(n) if next_n is not None]
|
|
}
|
|
data.update(connections)
|
|
return data
|
|
|
|
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
|
|
"""amplifer selection algorithm
|
|
@Orange Jean-Luc Augé
|
|
"""
|
|
Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
|
|
TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
|
|
|
|
# for roadm restriction only: create a dict including not allowed for design amps
|
|
# because main use case is to have specific radm amp which are not allowed for ILA
|
|
# with the auto design
|
|
edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
|
|
if restrictions is None or name in restrictions}
|
|
|
|
pin = power_target - gain_target
|
|
|
|
# create 2 list of available amplifiers with relevant attributes for their selection
|
|
|
|
# edfa list with:
|
|
# extended gain min allowance of 3dB: could be parametrized, but a bit complex
|
|
# extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
|
|
# power attribut include power AND gain limitations
|
|
edfa_list = [Edfa_list(
|
|
variety=edfa_variety,
|
|
power=min(
|
|
pin
|
|
+edfa.gain_flatmax
|
|
+TARGET_EXTENDED_GAIN,
|
|
edfa.p_max
|
|
)
|
|
-power_target,
|
|
gain_min=
|
|
gain_target+3
|
|
-edfa.gain_min,
|
|
nf=edfa_nf(gain_target, edfa_variety, equipment)) \
|
|
for edfa_variety, edfa in edfa_dict.items()
|
|
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
|
|
|
|
#consider a Raman list because of different gain_min requirement:
|
|
#do not allow extended gain min for Raman
|
|
raman_list = [Edfa_list(
|
|
variety=edfa_variety,
|
|
power=min(
|
|
pin
|
|
+edfa.gain_flatmax
|
|
+TARGET_EXTENDED_GAIN,
|
|
edfa.p_max
|
|
)
|
|
-power_target,
|
|
gain_min=
|
|
gain_target
|
|
-edfa.gain_min,
|
|
nf=edfa_nf(gain_target, edfa_variety, equipment))
|
|
for edfa_variety, edfa in edfa_dict.items()
|
|
if (edfa.allowed_for_design and edfa.raman)] \
|
|
if raman_allowed else []
|
|
|
|
#merge raman and edfa lists
|
|
amp_list = edfa_list + raman_list
|
|
|
|
#filter on min gain limitation:
|
|
acceptable_gain_min_list = [x for x in amp_list if x.gain_min>0]
|
|
|
|
if len(acceptable_gain_min_list) < 1:
|
|
#do not take this empty list into account for the rest of the code
|
|
#but issue a warning to the user and do not consider Raman
|
|
#Raman below min gain should not be allowed because i is meant to be a design requirement
|
|
#and raman padding at the amplifier input is impossible!
|
|
|
|
if len(edfa_list) < 1:
|
|
raise ConfigurationError(f'auto_design could not find any amplifier \
|
|
to satisfy min gain requirement in node {uid} \
|
|
please increase span fiber padding')
|
|
else:
|
|
# TODO: convert to logging
|
|
print(
|
|
f'\x1b[1;31;40m'\
|
|
+ f'WARNING: target gain in node {uid} is below all available amplifiers min gain: \
|
|
amplifier input padding will be assumed, consider increase span fiber padding instead'\
|
|
+ '\x1b[0m'
|
|
)
|
|
acceptable_gain_min_list = edfa_list
|
|
|
|
#filter on gain+power limitation:
|
|
#this list checks both the gain and the power requirement
|
|
#because of the way .power is calculated in the list
|
|
acceptable_power_list = [x for x in acceptable_gain_min_list if x.power>0]
|
|
if len(acceptable_power_list) < 1:
|
|
#no amplifier satisfies the required power, so pick the highest power(s):
|
|
power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
|
|
#check and pick if other amplifiers may have a similar gain/power
|
|
#allow a 0.3dB power range
|
|
#this allows to chose an amplifier with a better NF subsequentely
|
|
acceptable_power_list = [x for x in acceptable_gain_min_list
|
|
if x.power-power_max>-0.3]
|
|
|
|
|
|
# gain and power requirements are resolved,
|
|
# =>chose the amp with the best NF among the acceptable ones:
|
|
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) #filter on NF
|
|
#check what are the gain and power limitations of this amp
|
|
power_reduction = round(min(selected_edfa.power, 0),2)
|
|
if power_reduction < -0.5:
|
|
print(
|
|
f'\x1b[1;31;40m'\
|
|
+ f'WARNING: target gain and power in node {uid}\n \
|
|
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
|
|
a power reduction of {power_reduction} is applied\n'\
|
|
+ '\x1b[0m'
|
|
)
|
|
|
|
|
|
return selected_edfa.variety, power_reduction
|
|
|
|
def target_power(network, node, equipment): #get_fiber_dp
|
|
SPAN_LOSS_REF = 20
|
|
POWER_SLOPE = 0.3
|
|
power_mode = equipment['Span']['default'].power_mode
|
|
dp_range = list(equipment['Span']['default'].delta_power_range_db)
|
|
node_loss = span_loss(network, node)
|
|
|
|
try:
|
|
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
|
|
dp = max(dp_range[0], dp)
|
|
dp = min(dp_range[1], dp)
|
|
except KeyError:
|
|
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
|
|
f'delta_power_range_db: [lower_bound, upper_bound, step]')
|
|
|
|
if isinstance(node, Roadm):
|
|
dp = 0
|
|
|
|
return dp
|
|
|
|
def prev_node_generator(network, node):
|
|
"""fused spans interest:
|
|
iterate over all predecessors while they are Fused or Fiber type"""
|
|
try:
|
|
prev_node = next(n for n in network.predecessors(node))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
|
|
# yield and re-iterate
|
|
if isinstance(prev_node, Fused) or isinstance(node, Fused) and not isinstance(prev_node, Roadm):
|
|
yield prev_node
|
|
yield from prev_node_generator(network, prev_node)
|
|
else:
|
|
StopIteration
|
|
|
|
def next_node_generator(network, node):
|
|
"""fused spans interest:
|
|
iterate over all successors while they are Fused or Fiber type"""
|
|
try:
|
|
next_node = next(n for n in network.successors(node))
|
|
except StopIteration:
|
|
raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
|
|
# yield and re-iterate
|
|
if isinstance(next_node, Fused) or isinstance(node, Fused) and not isinstance(next_node, Roadm):
|
|
yield next_node
|
|
yield from next_node_generator(network, next_node)
|
|
else:
|
|
StopIteration
|
|
|
|
def span_loss(network, node):
|
|
"""Fused span interest:
|
|
return the total span loss of all the fibers spliced by a Fused node"""
|
|
loss = node.loss if node.passive else 0
|
|
try:
|
|
prev_node = next(n for n in network.predecessors(node))
|
|
if isinstance(prev_node, Fused):
|
|
loss += sum(n.loss for n in prev_node_generator(network, node))
|
|
except StopIteration:
|
|
pass
|
|
try:
|
|
next_node = next(n for n in network.successors(node))
|
|
if isinstance(next_node, Fused):
|
|
loss += sum(n.loss for n in next_node_generator(network, node))
|
|
except StopIteration:
|
|
pass
|
|
return loss
|
|
|
|
def find_first_node(network, node):
|
|
"""Fused node interest:
|
|
returns the 1st node at the origin of a succession of fused nodes
|
|
(aka no amp in between)"""
|
|
this_node = node
|
|
for this_node in prev_node_generator(network, node):
|
|
pass
|
|
return this_node
|
|
|
|
def find_last_node(network, node):
|
|
"""Fused node interest:
|
|
returns the last node in a succession of fused nodes
|
|
(aka no amp in between)"""
|
|
this_node = node
|
|
for this_node in next_node_generator(network, node):
|
|
pass
|
|
return this_node
|
|
|
|
def set_amplifier_voa(amp, power_target, power_mode):
|
|
VOA_MARGIN = 1 #do not maximize the VOA optimization
|
|
if amp.out_voa is None:
|
|
if power_mode:
|
|
gain_target = amp.effective_gain
|
|
voa = min(amp.params.p_max-power_target,
|
|
amp.params.gain_flatmax-amp.effective_gain)
|
|
voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0
|
|
amp.delta_p = amp.delta_p + voa
|
|
amp.effective_gain = amp.effective_gain + voa
|
|
else:
|
|
voa = 0 # no output voa optimization in gain mode
|
|
amp.out_voa = voa
|
|
|
|
def set_egress_amplifier(network, roadm, equipment, pref_total_db):
|
|
power_mode = equipment['Span']['default'].power_mode
|
|
next_oms = (n for n in network.successors(roadm) if not isinstance(n, Transceiver))
|
|
for oms in next_oms:
|
|
#go through all the OMS departing from the Roadm
|
|
node = roadm
|
|
prev_node = roadm
|
|
next_node = oms
|
|
# if isinstance(next_node, Fused): #support ROADM wo egress amp for metro applications
|
|
# node = find_last_node(next_node)
|
|
# next_node = next(n for n in network.successors(node))
|
|
# next_node = find_last_node(next_node)
|
|
|
|
if node.per_degree_target_pch_out_db:
|
|
# find the target power on this degree
|
|
try:
|
|
prev_dp = next(el["target_pch_out_db"] for el in \
|
|
node.per_degree_target_pch_out_db if el["to_node"]==next_node.uid)
|
|
except StopIteration:
|
|
# if no target power is defined on this degree use the global one
|
|
prev_dp = getattr(node.params, 'target_pch_out_db', 0)
|
|
else:
|
|
# if no per degree target power is given use the global one
|
|
prev_dp = getattr(node.params, 'target_pch_out_db', 0)
|
|
dp = prev_dp
|
|
prev_voa = 0
|
|
voa = 0
|
|
while True:
|
|
#go through all nodes in the OMS (loop until next Roadm instance)
|
|
if isinstance(node, Edfa):
|
|
node_loss = span_loss(network, prev_node)
|
|
voa = node.out_voa if node.out_voa else 0
|
|
if node.delta_p is None:
|
|
dp = target_power(network, next_node, equipment)
|
|
else:
|
|
dp = node.delta_p
|
|
gain_from_dp = node_loss + dp - prev_dp + prev_voa
|
|
if node.effective_gain is None or power_mode:
|
|
gain_target = gain_from_dp
|
|
else: #gain mode with effective_gain
|
|
gain_target = node.effective_gain
|
|
dp = prev_dp - node_loss + gain_target
|
|
|
|
power_target = pref_total_db + dp
|
|
|
|
raman_allowed = False
|
|
if isinstance(prev_node, Fiber):
|
|
max_fiber_lineic_loss_for_raman = \
|
|
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
|
|
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
|
|
|
|
# implementation of restrictions on roadm boosters
|
|
if isinstance(prev_node,Roadm):
|
|
if prev_node.restrictions['booster_variety_list']:
|
|
restrictions = prev_node.restrictions['booster_variety_list']
|
|
else:
|
|
restrictions = None
|
|
elif isinstance(next_node,Roadm):
|
|
# implementation of restrictions on roadm preamp
|
|
if next_node.restrictions['preamp_variety_list']:
|
|
restrictions = next_node.restrictions['preamp_variety_list']
|
|
else:
|
|
restrictions = None
|
|
else:
|
|
restrictions = None
|
|
|
|
if node.params.type_variety == '':
|
|
edfa_variety, power_reduction = select_edfa(raman_allowed,
|
|
gain_target, power_target, equipment, node.uid, restrictions)
|
|
extra_params = equipment['Edfa'][edfa_variety]
|
|
node.params.update_params(extra_params.__dict__)
|
|
dp += power_reduction
|
|
gain_target += power_reduction
|
|
elif node.params.raman and not raman_allowed:
|
|
print(
|
|
f'\x1b[1;31;40m'\
|
|
+ f'WARNING: raman is used in node {node.uid}\n \
|
|
but fiber lineic loss is above threshold\n'\
|
|
+ '\x1b[0m'
|
|
)
|
|
|
|
node.delta_p = dp if power_mode else None
|
|
node.effective_gain = gain_target
|
|
set_amplifier_voa(node, power_target, power_mode)
|
|
if isinstance(next_node, Roadm) or isinstance(next_node, Transceiver):
|
|
break
|
|
prev_dp = dp
|
|
prev_voa = voa
|
|
prev_node = node
|
|
node = next_node
|
|
# print(f'{node.uid}')
|
|
next_node = next(n for n in network.successors(node))
|
|
|
|
|
|
def add_egress_amplifier(network, node):
|
|
next_nodes = [n for n in network.successors(node)
|
|
if not (isinstance(n, Transceiver) or isinstance(n, Fused) or isinstance(n, Edfa))]
|
|
#no amplification for fused spans or TRX
|
|
for i, next_node in enumerate(next_nodes):
|
|
network.remove_edge(node, next_node)
|
|
amp = Edfa(
|
|
uid = f'Edfa{i}_{node.uid}',
|
|
params = {},
|
|
metadata = {
|
|
'location': {
|
|
'latitude': (node.lat * 2 + next_node.lat * 2) / 4,
|
|
'longitude': (node.lng * 2 + next_node.lng * 2) / 4,
|
|
'city': node.loc.city,
|
|
'region': node.loc.region,
|
|
}
|
|
},
|
|
operational = {
|
|
'gain_target': None,
|
|
'tilt_target': 0,
|
|
})
|
|
network.add_node(amp)
|
|
if isinstance(node,Fiber):
|
|
edgeweight = node.params.length
|
|
else:
|
|
edgeweight = 0.01
|
|
network.add_edge(node, amp, weight = edgeweight)
|
|
network.add_edge(amp, next_node, weight = 0.01)
|
|
|
|
|
|
def calculate_new_length(fiber_length, bounds, target_length):
|
|
if fiber_length < bounds.stop:
|
|
return fiber_length, 1
|
|
|
|
n_spans = int(fiber_length // target_length)
|
|
|
|
length1 = fiber_length / (n_spans+1)
|
|
delta1 = target_length-length1
|
|
result1 = (length1, n_spans+1)
|
|
|
|
length2 = fiber_length / n_spans
|
|
delta2 = length2-target_length
|
|
result2 = (length2, n_spans)
|
|
|
|
if (bounds.start<=length1<=bounds.stop) and not(bounds.start<=length2<=bounds.stop):
|
|
result = result1
|
|
elif (bounds.start<=length2<=bounds.stop) and not(bounds.start<=length1<=bounds.stop):
|
|
result = result2
|
|
else:
|
|
result = result1 if delta1 < delta2 else result2
|
|
|
|
return result
|
|
|
|
|
|
def split_fiber(network, fiber, bounds, target_length, equipment):
|
|
new_length, n_spans = calculate_new_length(fiber.length, bounds, target_length)
|
|
if n_spans == 1:
|
|
return
|
|
|
|
try:
|
|
next_node = next(network.successors(fiber))
|
|
prev_node = next(network.predecessors(fiber))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
|
|
|
network.remove_node(fiber)
|
|
|
|
fiber_params = fiber.params._asdict()
|
|
fiber_params['length'] = new_length / UNITS[fiber.params.length_units]
|
|
fiber_params['con_in'] = fiber.con_in
|
|
fiber_params['con_out'] = fiber.con_out
|
|
|
|
f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat])
|
|
xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n+1)/(n_spans+1) for n in range(n_spans)]
|
|
ypos = f(xpos)
|
|
for span, lng, lat in zip(range(n_spans), xpos, ypos):
|
|
new_span = Fiber(uid = f'{fiber.uid}_({span+1}/{n_spans})',
|
|
metadata = {
|
|
'location': {
|
|
'latitude': lat,
|
|
'longitude': lng,
|
|
'city': fiber.loc.city,
|
|
'region': fiber.loc.region,
|
|
}
|
|
},
|
|
params = fiber_params)
|
|
if isinstance(prev_node,Fiber):
|
|
edgeweight = prev_node.params.length
|
|
else:
|
|
edgeweight = 0.01
|
|
network.add_edge(prev_node, new_span, weight = edgeweight)
|
|
prev_node = new_span
|
|
if isinstance(prev_node,Fiber):
|
|
edgeweight = prev_node.params.length
|
|
else:
|
|
edgeweight = 0.01
|
|
network.add_edge(prev_node, next_node, weight = edgeweight)
|
|
|
|
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
|
|
for fiber in fibers:
|
|
if fiber.con_in is None: fiber.con_in = default_con_in
|
|
if fiber.con_out is None: fiber.con_out = default_con_out
|
|
next_node = next(n for n in network.successors(fiber))
|
|
if not isinstance(next_node, Fused):
|
|
fiber.con_out += EOL
|
|
|
|
def add_fiber_padding(network, fibers, padding):
|
|
"""last_fibers = (fiber for n in network.nodes()
|
|
if not (isinstance(n, Fiber) or isinstance(n, Fused))
|
|
for fiber in network.predecessors(n)
|
|
if isinstance(fiber, Fiber))"""
|
|
for fiber in fibers:
|
|
this_span_loss = span_loss(network, fiber)
|
|
try:
|
|
next_node = next(network.successors(fiber))
|
|
except StopIteration:
|
|
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
|
|
if this_span_loss < padding and not (isinstance(next_node, Fused)):
|
|
#add a padding att_in at the input of the 1st fiber:
|
|
#address the case when several fibers are spliced together
|
|
first_fiber = find_first_node(network, fiber)
|
|
# in order to support no booster , fused might be placed
|
|
# just after a roadm: need to check that first_fiber is really a fiber
|
|
if isinstance(first_fiber,Fiber):
|
|
if first_fiber.att_in is None:
|
|
first_fiber.att_in = padding - this_span_loss
|
|
else:
|
|
first_fiber.att_in = first_fiber.att_in + padding - this_span_loss
|
|
|
|
def build_network(network, equipment, pref_ch_db, pref_total_db):
|
|
default_span_data = equipment['Span']['default']
|
|
max_length = int(default_span_data.max_length * UNITS[default_span_data.length_units])
|
|
min_length = max(int(default_span_data.padding/0.2*1e3),50_000)
|
|
bounds = range(min_length, max_length)
|
|
target_length = max(min_length, 90_000)
|
|
default_con_in = default_span_data.con_in
|
|
default_con_out = default_span_data.con_out
|
|
padding = default_span_data.padding
|
|
|
|
#set roadm loss for gain_mode before to build network
|
|
fibers = [f for f in network.nodes() if isinstance(f, Fiber)]
|
|
add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL)
|
|
add_fiber_padding(network, fibers, padding)
|
|
# don't group split fiber and add amp in the same loop
|
|
# =>for code clarity (at the expense of speed):
|
|
for fiber in fibers:
|
|
split_fiber(network, fiber, bounds, target_length, equipment)
|
|
|
|
amplified_nodes = [n for n in network.nodes()
|
|
if isinstance(n, Fiber) or isinstance(n, Roadm)]
|
|
|
|
for node in amplified_nodes:
|
|
add_egress_amplifier(network, node)
|
|
|
|
roadms = [r for r in network.nodes() if isinstance(r, Roadm)]
|
|
for roadm in roadms:
|
|
set_egress_amplifier(network, roadm, equipment, pref_total_db)
|
|
|
|
#support older json input topology wo Roadms:
|
|
if len(roadms) == 0:
|
|
trx = [t for t in network.nodes() if isinstance(t, Transceiver)]
|
|
for t in trx:
|
|
set_egress_amplifier(network, t, equipment, pref_total_db)
|
|
|
|
def load_sim_params(filename):
|
|
sim_params = load_json(filename)
|
|
return SimParams(params=sim_params)
|
|
|
|
def configure_network(network, sim_params):
|
|
for node in network.nodes:
|
|
if isinstance(node, RamanFiber):
|
|
node.sim_params = sim_params
|