mirror of
				https://github.com/Telecominfraproject/oopt-gnpy.git
				synced 2025-10-31 01:57:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			913 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			913 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| """
 | |
| gnpy.core.elements
 | |
| ==================
 | |
| 
 | |
| Standard network elements which propagate optical spectrum
 | |
| 
 | |
| A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
 | |
| object and returns a copy with appropriate fields affected. This structure
 | |
| represents spectral information that is "propogated" by this network element.
 | |
| Network elements must have only a local "view" of the network and propogate
 | |
| :class:`.info.SpectralInformation` using only this information. They should be independent and
 | |
| self-contained.
 | |
| 
 | |
| Network elements MUST implement two attributes :py:attr:`uid` and :py:attr:`name` representing a
 | |
| unique identifier and a printable name, and provide the :py:meth:`__call__` method taking a
 | |
| :class:`SpectralInformation` as an input and returning another :class:`SpectralInformation`
 | |
| instance as a result.
 | |
| """
 | |
| 
 | |
| from numpy import abs, array, divide, errstate, ones, interp, mean, pi, polyfit, polyval, sum, sqrt, log10, exp,\
 | |
|     asarray, full, squeeze, zeros, append, flip, outer
 | |
| from scipy.constants import h, c
 | |
| from scipy.interpolate import interp1d
 | |
| from collections import namedtuple
 | |
| 
 | |
| from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
 | |
| from gnpy.core.parameters import RoadmParams, FusedParams, FiberParams, PumpParams, EdfaParams, EdfaOperational
 | |
| from gnpy.core.science_utils import NliSolver, RamanSolver
 | |
| from gnpy.core.info import SpectralInformation
 | |
| from gnpy.core.exceptions import NetworkTopologyError, SpectrumError
 | |
| 
 | |
| 
 | |
| class Location(namedtuple('Location', 'latitude longitude city region')):
 | |
|     def __new__(cls, latitude=0, longitude=0, city=None, region=None):
 | |
|         return super().__new__(cls, latitude, longitude, city, region)
 | |
| 
 | |
| 
 | |
| class _Node:
 | |
|     '''Convenience class for providing common functionality of all network elements
 | |
| 
 | |
|     This class is just an internal implementation detail; do **not** assume that all network elements
 | |
|     inherit from :class:`_Node`.
 | |
|     '''
 | |
|     def __init__(self, uid, name=None, params=None, metadata=None, operational=None, type_variety=None):
 | |
|         if name is None:
 | |
|             name = uid
 | |
|         self.uid, self.name = uid, name
 | |
|         if metadata is None:
 | |
|             metadata = {'location': {}}
 | |
|         if metadata and not isinstance(metadata.get('location'), Location):
 | |
|             metadata['location'] = Location(**metadata.pop('location', {}))
 | |
|         self.params, self.metadata, self.operational = params, metadata, operational
 | |
|         if type_variety:
 | |
|             self.type_variety = type_variety
 | |
| 
 | |
|     @property
 | |
|     def location(self):
 | |
|         return self.metadata['location']
 | |
|     loc = location
 | |
| 
 | |
|     @property
 | |
|     def longitude(self):
 | |
|         return self.location.longitude
 | |
|     lng = longitude
 | |
| 
 | |
|     @property
 | |
|     def latitude(self):
 | |
|         return self.location.latitude
 | |
|     lat = latitude
 | |
| 
 | |
| 
 | |
| class Transceiver(_Node):
 | |
|     def __init__(self, *args, **kwargs):
 | |
|         super().__init__(*args, **kwargs)
 | |
|         self.osnr_ase_01nm = None
 | |
|         self.osnr_ase = None
 | |
|         self.osnr_nli = None
 | |
|         self.snr = None
 | |
|         self.passive = False
 | |
|         self.baud_rate = None
 | |
|         self.chromatic_dispersion = None
 | |
|         self.pmd = None
 | |
|         self.pdl = None
 | |
|         self.penalties = {}
 | |
|         self.total_penalty = 0
 | |
| 
 | |
|     def _calc_cd(self, spectral_info):
 | |
|         """ Updates the Transceiver property with the CD of the received channels. CD in ps/nm.
 | |
|         """
 | |
|         self.chromatic_dispersion = [carrier.chromatic_dispersion * 1e3 for carrier in spectral_info.carriers]
 | |
| 
 | |
|     def _calc_pmd(self, spectral_info):
 | |
|         """Updates the Transceiver property with the PMD of the received channels. PMD in ps.
 | |
|         """
 | |
|         self.pmd = [carrier.pmd*1e12 for carrier in spectral_info.carriers]
 | |
| 
 | |
|     def _calc_pdl(self, spectral_info):
 | |
|         """Updates the Transceiver property with the PDL of the received channels. PDL in dB.
 | |
|         """
 | |
|         self.pdl = spectral_info.pdl
 | |
| 
 | |
|     def _calc_penalty(self, impairment_value, boundary_list):
 | |
|         return interp(impairment_value, boundary_list['up_to_boundary'], boundary_list['penalty_value'],
 | |
|                       left=float('inf'), right=float('inf'))
 | |
| 
 | |
|     def calc_penalties(self, penalties):
 | |
|         """Updates the Transceiver property with penalties (CD, PMD, etc.) of the received channels in dB.
 | |
|            Penalties are linearly interpolated between given points and set to 'inf' outside interval.
 | |
|         """
 | |
|         self.penalties = {impairment: self._calc_penalty(getattr(self, impairment), boundary_list)
 | |
|                           for impairment, boundary_list in penalties.items()}
 | |
|         self.total_penalty = sum(list(self.penalties.values()), axis=0)
 | |
| 
 | |
|     def _calc_snr(self, spectral_info):
 | |
|         with errstate(divide='ignore'):
 | |
|             self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
 | |
|             ratio_01nm = [lin2db(12.5e9 / b_rate) for b_rate in self.baud_rate]
 | |
|             # set raw values to record original calculation, before update_snr()
 | |
|             self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
 | |
|                                  for c in spectral_info.carriers]
 | |
|             self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
 | |
|                                       in zip(self.raw_osnr_ase, ratio_01nm)]
 | |
|             self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
 | |
|                                  for c in spectral_info.carriers]
 | |
|             self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli + c.power.ase))
 | |
|                             for c in spectral_info.carriers]
 | |
|             self.raw_snr_01nm = [snr - ratio for snr, ratio
 | |
|                                  in zip(self.raw_snr, ratio_01nm)]
 | |
| 
 | |
|             self.osnr_ase = self.raw_osnr_ase
 | |
|             self.osnr_ase_01nm = self.raw_osnr_ase_01nm
 | |
|             self.osnr_nli = self.raw_osnr_nli
 | |
|             self.snr = self.raw_snr
 | |
|             self.snr_01nm = self.raw_snr_01nm
 | |
| 
 | |
|     def update_snr(self, *args):
 | |
|         """
 | |
|         snr_added in 0.1nm
 | |
|         compute SNR penalties such as transponder Tx_osnr or Roadm add_drop_osnr
 | |
|         only applied in request.py / propagate on the last Trasceiver node of the path
 | |
|         all penalties are added in a single call because to avoid uncontrolled cumul
 | |
|         """
 | |
|         # use raw_values so that the added SNR penalties are not cumulated
 | |
|         snr_added = 0
 | |
|         for s in args:
 | |
|             snr_added += db2lin(-s)
 | |
|         snr_added = -lin2db(snr_added)
 | |
|         self.osnr_ase = list(map(lambda x, y: snr_sum(x, y, snr_added),
 | |
|                                  self.raw_osnr_ase, self.baud_rate))
 | |
|         self.snr = list(map(lambda x, y: snr_sum(x, y, snr_added),
 | |
|                             self.raw_snr, self.baud_rate))
 | |
|         self.osnr_ase_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
 | |
|                                       self.raw_osnr_ase_01nm))
 | |
|         self.snr_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
 | |
|                                  self.raw_snr_01nm))
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid': self.uid,
 | |
|                 'type': type(self).__name__,
 | |
|                 'metadata': {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}('
 | |
|                 f'uid={self.uid!r}, '
 | |
|                 f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
 | |
|                 f'osnr_ase={self.osnr_ase!r}, '
 | |
|                 f'osnr_nli={self.osnr_nli!r}, '
 | |
|                 f'snr={self.snr!r}, '
 | |
|                 f'chromatic_dispersion={self.chromatic_dispersion!r}, '
 | |
|                 f'pmd={self.pmd!r}, '
 | |
|                 f'pdl={self.pdl!r}, '
 | |
|                 f'penalties={self.penalties!r})')
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.snr is None or self.osnr_ase is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
| 
 | |
|         snr = round(mean(self.snr), 2)
 | |
|         osnr_ase = round(mean(self.osnr_ase), 2)
 | |
|         osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
 | |
|         snr_01nm = round(mean(self.snr_01nm), 2)
 | |
|         cd = mean(self.chromatic_dispersion)
 | |
|         pmd = mean(self.pmd)
 | |
|         pdl = mean(self.pdl)
 | |
| 
 | |
|         result = '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
| 
 | |
|                           f'  GSNR (0.1nm, dB):          {snr_01nm:.2f}',
 | |
|                           f'  GSNR (signal bw, dB):      {snr:.2f}',
 | |
|                           f'  OSNR ASE (0.1nm, dB):      {osnr_ase_01nm:.2f}',
 | |
|                           f'  OSNR ASE (signal bw, dB):  {osnr_ase:.2f}',
 | |
|                           f'  CD (ps/nm):                {cd:.2f}',
 | |
|                           f'  PMD (ps):                  {pmd:.2f}',
 | |
|                           f'  PDL (dB):                  {pdl:.2f}'])
 | |
| 
 | |
|         cd_penalty = self.penalties.get('chromatic_dispersion')
 | |
|         if cd_penalty is not None:
 | |
|             result += f'\n  CD penalty (dB):           {mean(cd_penalty):.2f}'
 | |
|         pmd_penalty = self.penalties.get('pmd')
 | |
|         if pmd_penalty is not None:
 | |
|             result += f'\n  PMD penalty (dB):          {mean(pmd_penalty):.2f}'
 | |
|         pdl_penalty = self.penalties.get('pdl')
 | |
|         if pdl_penalty is not None:
 | |
|             result += f'\n  PDL penalty (dB):          {mean(pdl_penalty):.2f}'
 | |
| 
 | |
|         return result
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self._calc_snr(spectral_info)
 | |
|         self._calc_cd(spectral_info)
 | |
|         self._calc_pmd(spectral_info)
 | |
|         self._calc_pdl(spectral_info)
 | |
|         return spectral_info
 | |
| 
 | |
| 
 | |
| class Roadm(_Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if not params:
 | |
|             params = {}
 | |
|         super().__init__(*args, params=RoadmParams(**params), **kwargs)
 | |
|         self.pch_out_db = self.params.target_pch_out_db
 | |
|         self.loss = 0  # auto-design interest
 | |
|         self.effective_loss = None
 | |
|         self.passive = True
 | |
|         self.restrictions = self.params.restrictions
 | |
|         self.per_degree_pch_out_db = self.params.per_degree_pch_out_db
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid': self.uid,
 | |
|                 'type': type(self).__name__,
 | |
|                 'params': {
 | |
|                     'target_pch_out_db': self.pch_out_db,
 | |
|                     'restrictions': self.restrictions,
 | |
|                     'per_degree_pch_out_db': self.per_degree_pch_out_db
 | |
|                     },
 | |
|                 'metadata': {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.effective_loss is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
| 
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  effective loss (dB):  {self.effective_loss:.2f}',
 | |
|                           f'  pch out (dBm):        {self.pch_out_db:.2f}'])
 | |
| 
 | |
|     def propagate(self, spectral_info, degree):
 | |
|         # pin_target and loss are read from eqpt_config.json['Roadm']
 | |
|         # all ingress channels in xpress are set to this power level
 | |
|         # but add channels are not, so we define an effective loss
 | |
|         # in the case of add channels
 | |
|         # find the target power on this degree:
 | |
|         # if a target power has been defined for this degree use it else use the global one.
 | |
|         # if the input power is lower than the target one, use the input power instead because
 | |
|         # a ROADM doesn't amplify, it can only attenuate
 | |
|         # TODO maybe add a minimum loss for the ROADM
 | |
|         per_degree_pch = self.per_degree_pch_out_db[degree] \
 | |
|             if degree in self.per_degree_pch_out_db else self.pch_out_db
 | |
|         self.pch_out_db = min(spectral_info.pref.p_spani, per_degree_pch)
 | |
|         self.effective_loss = spectral_info.pref.p_spani - self.pch_out_db
 | |
|         input_power = spectral_info.signal + spectral_info.nli + spectral_info.ase
 | |
|         min_power = min(lin2db(input_power * 1e3))
 | |
|         per_degree_pch = per_degree_pch if per_degree_pch < min_power else min_power
 | |
|         delta_power = lin2db(input_power * 1e3) - per_degree_pch
 | |
|         spectral_info.apply_attenuation_db(delta_power)
 | |
|         spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.params.pmd ** 2)
 | |
|         spectral_info.pdl = sqrt(spectral_info.pdl ** 2 + self.params.pdl ** 2)
 | |
| 
 | |
|     def update_pref(self, spectral_info):
 | |
|         spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0, p_spani=self.pch_out_db)
 | |
| 
 | |
|     def __call__(self, spectral_info, degree):
 | |
|         self.propagate(spectral_info, degree=degree)
 | |
|         self.update_pref(spectral_info)
 | |
|         return spectral_info
 | |
| 
 | |
| 
 | |
| class Fused(_Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if not params:
 | |
|             params = {}
 | |
|         super().__init__(*args, params=FusedParams(**params), **kwargs)
 | |
|         self.loss = self.params.loss
 | |
|         self.passive = True
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid': self.uid,
 | |
|                 'type': type(self).__name__,
 | |
|                 'params': {
 | |
|                     'loss': self.loss
 | |
|                 },
 | |
|                 'metadata': {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  loss (dB): {self.loss:.2f}'])
 | |
| 
 | |
|     def propagate(self, spectral_info):
 | |
|         spectral_info.apply_attenuation_db(self.loss)
 | |
| 
 | |
|     def update_pref(self, spectral_info):
 | |
|         spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
 | |
|                                                          p_spani=spectral_info.pref.p_spani - self.loss)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self.propagate(spectral_info)
 | |
|         self.update_pref(spectral_info)
 | |
|         return spectral_info
 | |
| 
 | |
| 
 | |
| class Fiber(_Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if not params:
 | |
|             params = {}
 | |
|         super().__init__(*args, params=FiberParams(**params), **kwargs)
 | |
|         self.pch_out_db = None
 | |
|         self.passive = True
 | |
| 
 | |
|         # Raman efficiency matrix function of the delta frequency constructed such that each row is related to a
 | |
|         # fixed frequency: positive elements represent a gain (from higher frequency) and negative elements represent
 | |
|         # a loss (to lower frequency)
 | |
|         if self.params.raman_efficiency:
 | |
|             frequency_offset = self.params.raman_efficiency['frequency_offset']
 | |
|             frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
 | |
|             cr = self.params.raman_efficiency['cr']
 | |
|             cr = append(- flip(cr[1:]), cr)
 | |
|             self._cr_function = lambda frequency: interp(frequency, frequency_offset, cr)
 | |
|         else:
 | |
|             self._cr_function = lambda frequency: zeros(squeeze(frequency).shape)
 | |
| 
 | |
|         # Lumped losses
 | |
|         z_lumped_losses = array([lumped['position'] for lumped in self.params.lumped_losses])  # km
 | |
|         lumped_losses_power = array([lumped['loss'] for lumped in self.params.lumped_losses])  # dB
 | |
|         if not ((z_lumped_losses > 0) * (z_lumped_losses < 1e-3 * self.params.length)).all():
 | |
|             raise NetworkTopologyError("Lumped loss positions must be between 0 and the fiber length "
 | |
|                                        f"({1e-3 * self.params.length} km), boundaries excluded.")
 | |
|         self.lumped_losses = db2lin(- lumped_losses_power)  # [linear units]
 | |
|         self.z_lumped_losses = array(z_lumped_losses) * 1e3  # [m]
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid': self.uid,
 | |
|                 'type': type(self).__name__,
 | |
|                 'type_variety': self.type_variety,
 | |
|                 'params': {
 | |
|                     # have to specify each because namedtupple cannot be updated :(
 | |
|                     'length': round(self.params.length * 1e-3, 6),
 | |
|                     'loss_coef': round(self.params.loss_coef * 1e3, 6),
 | |
|                     'length_units': 'km',
 | |
|                     'att_in': self.params.att_in,
 | |
|                     'con_in': self.params.con_in,
 | |
|                     'con_out': self.params.con_out
 | |
|                 },
 | |
|                 'metadata': {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, ' \
 | |
|             f'length={round(self.params.length * 1e-3,1)!r}km, ' \
 | |
|             f'loss={round(self.loss,1)!r}dB)'
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.pch_out_db is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
| 
 | |
|         return '\n'.join([f'{type(self).__name__}          {self.uid}',
 | |
|                           f'  type_variety:                {self.type_variety}',
 | |
|                           f'  length (km):                 {self.params.length * 1e-3:.2f}',
 | |
|                           f'  pad att_in (dB):             {self.params.att_in:.2f}',
 | |
|                           f'  total loss (dB):             {self.loss:.2f}',
 | |
|                           f'  (includes conn loss (dB) in: {self.params.con_in:.2f} out: {self.params.con_out:.2f})',
 | |
|                           f'  (conn loss out includes EOL margin defined in eqpt_config.json)',
 | |
|                           f'  pch out (dBm): {self.pch_out_db:.2f}'])
 | |
| 
 | |
|     def loss_coef_func(self, frequency):
 | |
|         frequency = asarray(frequency)
 | |
|         if self.params.loss_coef.size > 1:
 | |
|             try:
 | |
|                 loss_coef = interp1d(self.params.f_loss_ref, self.params.loss_coef)(frequency)
 | |
|             except ValueError:
 | |
|                 raise SpectrumError('The spectrum bandwidth exceeds the frequency interval used to define the fiber '
 | |
|                                     f'loss coefficient in "{type(self).__name__} {self.uid}".'
 | |
|                                     f'\nSpectrum f_min-f_max: {round(frequency[0]*1e-12,2)}-'
 | |
|                                     f'{round(frequency[-1]*1e-12,2)}'
 | |
|                                     f'\nLoss coefficient f_min-f_max: {round(self.params.f_loss_ref[0]*1e-12,2)}-'
 | |
|                                     f'{round(self.params.f_loss_ref[-1]*1e-12,2)}')
 | |
|         else:
 | |
|             loss_coef = full(frequency.size, self.params.loss_coef)
 | |
|         return squeeze(loss_coef)
 | |
| 
 | |
| 
 | |
|     @property
 | |
|     def loss(self):
 | |
|         """total loss including padding att_in: useful for polymorphism with roadm loss"""
 | |
|         return self.loss_coef_func(self.params.ref_frequency) * self.params.length + \
 | |
|             self.params.con_in + self.params.con_out + self.params.att_in
 | |
| 
 | |
|     def alpha(self, frequency):
 | |
|         """Returns the linear exponent attenuation coefficient such that
 | |
|         :math: `lin_attenuation = e^{- alpha length}`
 | |
| 
 | |
|         :param frequency: the frequency at which alpha is computed [Hz]
 | |
|         :return: alpha: power attenuation coefficient for f in frequency [Neper/m]
 | |
|         """
 | |
|         return self.loss_coef_func(frequency) / (10 * log10(exp(1)))
 | |
| 
 | |
|     def cr(self, frequency):
 | |
|         """Returns the raman efficiency matrix including the vibrational loss
 | |
| 
 | |
|         :param frequency: the frequency at which cr is computed [Hz]
 | |
|         :return: cr: raman efficiency matrix [1 / (W m)]
 | |
|         """
 | |
|         df = outer(ones(frequency.shape), frequency) - outer(frequency, ones(frequency.shape))
 | |
|         cr = self._cr_function(df)
 | |
|         vibrational_loss = outer(frequency, ones(frequency.shape)) / outer(ones(frequency.shape), frequency)
 | |
|         return cr * (cr >= 0) + cr * (cr < 0) * vibrational_loss  # Raman efficiency [1/(W m)]
 | |
| 
 | |
|     def chromatic_dispersion(self, freq=None):
 | |
|         """Returns accumulated chromatic dispersion (CD).
 | |
| 
 | |
|         :param freq: the frequency at which the chromatic dispersion is computed
 | |
|         :return: chromatic dispersion: the accumulated dispersion [s/m]
 | |
|         """
 | |
|         freq = self.params.ref_frequency if freq is None else freq
 | |
|         beta2 = self.params.beta2
 | |
|         beta3 = self.params.beta3
 | |
|         ref_f = self.params.ref_frequency
 | |
|         length = self.params.length
 | |
|         beta = beta2 + 2 * pi * beta3 * (freq - ref_f)
 | |
|         dispersion = -beta * 2 * pi * ref_f**2 / c
 | |
|         return dispersion * length
 | |
| 
 | |
|     @property
 | |
|     def pmd(self):
 | |
|         """differential group delay (PMD) [s]"""
 | |
|         return self.params.pmd_coef * sqrt(self.params.length)
 | |
| 
 | |
|     def propagate(self, spectral_info: SpectralInformation):
 | |
|         """Modifies the spectral information computing the attenuation, the non-linear interference generation,
 | |
|         the CD and PMD accumulation.
 | |
|         """
 | |
|         # apply the attenuation due to the input connector loss
 | |
|         attenuation_in_db = self.params.con_in + self.params.att_in
 | |
|         spectral_info.apply_attenuation_db(attenuation_in_db)
 | |
| 
 | |
|         # inter channels Raman effect
 | |
|         stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, self)
 | |
| 
 | |
|         # NLI noise evaluated at the fiber input
 | |
|         spectral_info.nli += NliSolver.compute_nli(spectral_info, stimulated_raman_scattering, self)
 | |
| 
 | |
|         # chromatic dispersion and pmd variations
 | |
|         spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
 | |
|         spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
 | |
| 
 | |
|         # apply the attenuation due to the fiber losses
 | |
|         attenuation_fiber = stimulated_raman_scattering.loss_profile[:, -1]
 | |
|         spectral_info.apply_attenuation_lin(attenuation_fiber)
 | |
| 
 | |
|         # apply the attenuation due to the output connector loss
 | |
|         attenuation_out_db = self.params.con_out
 | |
|         spectral_info.apply_attenuation_db(attenuation_out_db)
 | |
| 
 | |
|     def update_pref(self, spectral_info):
 | |
|         # in case of Raman, the resulting loss of the fiber is not equivalent to self.loss
 | |
|         # because of Raman gain. In order to correctly update pref, we need the resulting loss:
 | |
|         # power_out - power_in. We use the total signal power (sum on all channels) to compute
 | |
|         # this loss, because pref is a noiseless reference.
 | |
|         loss = round(lin2db(self._psig_in / sum(spectral_info.signal)), 2)
 | |
|         self.pch_out_db = spectral_info.pref.p_spani - loss
 | |
|         spectral_info.pref = spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
 | |
|                                                          p_spani=self.pch_out_db)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         # _psig_in records the total signal power of the spectral information before propagation.
 | |
|         self._psig_in = sum(spectral_info.signal)
 | |
|         self.propagate(spectral_info)
 | |
|         self.update_pref(spectral_info)
 | |
|         return spectral_info
 | |
| 
 | |
| 
 | |
| class RamanFiber(Fiber):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         super().__init__(*args, params=params, **kwargs)
 | |
|         if not self.operational:
 | |
|             raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
 | |
|                                        'defined as RamanFiber without operational parameters')
 | |
| 
 | |
|         if 'raman_pumps' not in self.operational:
 | |
|             raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
 | |
|                                        'defined as RamanFiber without raman pumps description in operational')
 | |
| 
 | |
|         if 'temperature' not in self.operational:
 | |
|             raise NetworkTopologyError(f'Fiber element uid:{self.uid} '
 | |
|                                        'defined as RamanFiber without temperature in operational')
 | |
| 
 | |
|         pump_loss = db2lin(self.params.con_out)
 | |
|         self.raman_pumps = tuple(PumpParams(p['power'] / pump_loss, p['frequency'], p['propagation_direction'])
 | |
|                                  for p in self.operational['raman_pumps'])
 | |
|         self.temperature = self.operational['temperature']
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return dict(super().to_json, operational=self.operational)
 | |
| 
 | |
|     def propagate(self, spectral_info: SpectralInformation):
 | |
|         """Modifies the spectral information computing the attenuation, the non-linear interference generation,
 | |
|         the CD and PMD accumulation.
 | |
|         """
 | |
|         # apply the attenuation due to the input connector loss
 | |
|         attenuation_in_db = self.params.con_in + self.params.att_in
 | |
|         spectral_info.apply_attenuation_db(attenuation_in_db)
 | |
| 
 | |
|         # Raman pumps and inter channel Raman effect
 | |
|         stimulated_raman_scattering = RamanSolver.calculate_stimulated_raman_scattering(spectral_info, self)
 | |
|         spontaneous_raman_scattering = \
 | |
|             RamanSolver.calculate_spontaneous_raman_scattering(spectral_info, stimulated_raman_scattering, self)
 | |
| 
 | |
|         # nli and ase noise evaluated at the fiber input
 | |
|         spectral_info.nli += NliSolver.compute_nli(spectral_info, stimulated_raman_scattering, self)
 | |
|         spectral_info.ase += spontaneous_raman_scattering
 | |
| 
 | |
|         # chromatic dispersion and pmd variations
 | |
|         spectral_info.chromatic_dispersion += self.chromatic_dispersion(spectral_info.frequency)
 | |
|         spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.pmd ** 2)
 | |
| 
 | |
|         # apply the attenuation due to the fiber losses
 | |
|         attenuation_fiber = stimulated_raman_scattering.loss_profile[:spectral_info.number_of_channels, -1]
 | |
| 
 | |
|         spectral_info.apply_attenuation_lin(attenuation_fiber)
 | |
| 
 | |
|         # apply the attenuation due to the output connector loss
 | |
|         attenuation_out_db = self.params.con_out
 | |
|         spectral_info.apply_attenuation_db(attenuation_out_db)
 | |
| 
 | |
| 
 | |
| class Edfa(_Node):
 | |
|     def __init__(self, *args, params=None, operational=None, **kwargs):
 | |
|         if params is None:
 | |
|             params = {}
 | |
|         if operational is None:
 | |
|             operational = {}
 | |
|         self.variety_list = kwargs.pop('variety_list', None)
 | |
|         super().__init__(*args, params=EdfaParams(**params), operational=EdfaOperational(**operational), **kwargs)
 | |
|         self.interpol_dgt = None  # interpolated dynamic gain tilt
 | |
|         self.interpol_gain_ripple = None  # gain ripple
 | |
|         self.interpol_nf_ripple = None  # nf_ripple
 | |
|         self.channel_freq = None  # SI channel frequencies
 | |
|         # nf, gprofile, pin and pout attributes are set by interpol_params
 | |
|         self.nf = None  # dB edfa nf at operational.gain_target
 | |
|         self.gprofile = None
 | |
|         self.pin_db = None
 | |
|         self.nch = None
 | |
|         self.pout_db = None
 | |
|         self.target_pch_out_db = None
 | |
|         self.effective_pch_out_db = None
 | |
|         self.passive = False
 | |
|         self.att_in = None
 | |
|         self.effective_gain = self.operational.gain_target
 | |
|         self.delta_p = self.operational.delta_p  # delta P with Pref (power swwep) in power mode
 | |
|         self.tilt_target = self.operational.tilt_target
 | |
|         self.out_voa = self.operational.out_voa
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid': self.uid,
 | |
|                 'type': type(self).__name__,
 | |
|                 'type_variety': self.params.type_variety,
 | |
|                 'operational': {
 | |
|                     'gain_target': round(self.effective_gain, 6),
 | |
|                     'delta_p': self.delta_p,
 | |
|                     'tilt_target': self.tilt_target,
 | |
|                     'out_voa': self.out_voa
 | |
|                 },
 | |
|                 'metadata': {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}(uid={self.uid!r}, '
 | |
|                 f'type_variety={self.params.type_variety!r}, '
 | |
|                 f'interpol_dgt={self.interpol_dgt!r}, '
 | |
|                 f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
 | |
|                 f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
 | |
|                 f'channel_freq={self.channel_freq!r}, '
 | |
|                 f'nf={self.nf!r}, '
 | |
|                 f'gprofile={self.gprofile!r}, '
 | |
|                 f'pin_db={self.pin_db!r}, '
 | |
|                 f'pout_db={self.pout_db!r})')
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.pin_db is None or self.pout_db is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
|         nf = mean(self.nf)
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  type_variety:           {self.params.type_variety}',
 | |
|                           f'  effective gain(dB):     {self.effective_gain:.2f}',
 | |
|                           f'  (before att_in and before output VOA)',
 | |
|                           f'  noise figure (dB):      {nf:.2f}',
 | |
|                           f'  (including att_in)',
 | |
|                           f'  pad att_in (dB):        {self.att_in:.2f}',
 | |
|                           f'  Power In (dBm):         {self.pin_db:.2f}',
 | |
|                           f'  Power Out (dBm):        {self.pout_db:.2f}',
 | |
|                           f'  Delta_P (dB):           ' + (f'{self.delta_p:.2f}' if self.delta_p is not None else 'None'),
 | |
|                           f'  target pch (dBm):       ' + (f'{self.target_pch_out_db:.2f}' if self.target_pch_out_db is not None else 'None'),
 | |
|                           f'  effective pch (dBm):    {self.effective_pch_out_db:.2f}',
 | |
|                           f'  output VOA (dB):        {self.out_voa:.2f}'])
 | |
| 
 | |
|     def interpol_params(self, spectral_info):
 | |
|         """interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
 | |
|         :param spectral_info: instance of gnpy.core.info.SpectralInformation
 | |
|         :return: None
 | |
|         """
 | |
|         # TODO|jla: read amplifier actual frequencies from additional params in json
 | |
| 
 | |
|         self.channel_freq = spectral_info.frequency
 | |
|         amplifier_freq = arrange_frequencies(len(self.params.dgt), self.params.f_min, self.params.f_max)  # Hz
 | |
|         self.interpol_dgt = interp(spectral_info.frequency, amplifier_freq, self.params.dgt)
 | |
| 
 | |
|         amplifier_freq = arrange_frequencies(len(self.params.gain_ripple), self.params.f_min, self.params.f_max)  # Hz
 | |
|         self.interpol_gain_ripple = interp(spectral_info.frequency, amplifier_freq, self.params.gain_ripple)
 | |
| 
 | |
|         amplifier_freq = arrange_frequencies(len(self.params.nf_ripple), self.params.f_min, self.params.f_max)  # Hz
 | |
|         self.interpol_nf_ripple = interp(spectral_info.frequency, amplifier_freq, self.params.nf_ripple)
 | |
| 
 | |
|         self.nch = spectral_info.number_of_channels
 | |
|         pin = spectral_info.signal + spectral_info.ase + spectral_info.nli
 | |
|         self.pin_db = lin2db(sum(pin * 1e3))
 | |
|         # The following should be changed when we have the new spectral information including slot widths.
 | |
|         # For now, with homogeneous spectrum, we can calculate it as the difference between neighbouring channels.
 | |
|         self.slot_width = self.channel_freq[1] - self.channel_freq[0]
 | |
| 
 | |
|         """in power mode: delta_p is defined and can be used to calculate the power target
 | |
|         This power target is used calculate the amplifier gain"""
 | |
|         pref = spectral_info.pref
 | |
|         if self.delta_p is not None:
 | |
|             self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
 | |
|             self.effective_gain = self.target_pch_out_db - pref.p_spani
 | |
| 
 | |
|         """check power saturation and correct effective gain & power accordingly:"""
 | |
|         self.effective_gain = min(
 | |
|             self.effective_gain,
 | |
|             self.params.p_max - (pref.p_spani + pref.neq_ch)
 | |
|         )
 | |
|         #print(self.uid, self.effective_gain, self.operational.gain_target)
 | |
|         self.effective_pch_out_db = round(pref.p_spani + self.effective_gain, 2)
 | |
| 
 | |
|         """check power saturation and correct target_gain accordingly:"""
 | |
|         #print(self.uid, self.effective_gain, self.pin_db, pref.p_spani)
 | |
|         self.nf = self._calc_nf()
 | |
|         self.gprofile = self._gain_profile(pin)
 | |
| 
 | |
|         pout = (pin + self.noise_profile(spectral_info)) * db2lin(self.gprofile)
 | |
|         self.pout_db = lin2db(sum(pout * 1e3))
 | |
|         # ase & nli are only calculated in signal bandwidth
 | |
|         #    pout_db is not the absolute full output power (negligible if sufficient channels)
 | |
| 
 | |
|     def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
 | |
|         # if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax
 | |
|         #gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
 | |
|         pad = max(gain_min - gain_target, 0)
 | |
|         gain_target += pad
 | |
|         dg = max(gain_flatmax - gain_target, 0)
 | |
|         if type_def == 'variable_gain':
 | |
|             g1a = gain_target - nf_model.delta_p - dg
 | |
|             nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2) / db2lin(g1a))
 | |
|         elif type_def == 'fixed_gain':
 | |
|             nf_avg = nf_model.nf0
 | |
|         elif type_def == 'openroadm':
 | |
|             # OpenROADM specifies OSNR vs. input power per channel for 50 GHz slot width so we
 | |
|             # scale it to 50 GHz based on actual slot width.
 | |
|             pin_ch_50GHz = self.pin_db - lin2db(self.nch) + lin2db(50e9 / self.slot_width)
 | |
|             # model OSNR = f(Pin per 50 GHz channel)
 | |
|             nf_avg = pin_ch_50GHz - polyval(nf_model.nf_coef, pin_ch_50GHz) + 58
 | |
|         elif type_def == 'openroadm_preamp':
 | |
|             # OpenROADM specifies OSNR vs. input power per channel for 50 GHz slot width so we
 | |
|             # scale it to 50 GHz based on actual slot width.
 | |
|             pin_ch_50GHz = self.pin_db - lin2db(self.nch) + lin2db(50e9 / self.slot_width)
 | |
|             # model OSNR = f(Pin per 50 GHz channel)
 | |
|             nf_avg = pin_ch_50GHz - min((4 * pin_ch_50GHz + 275) / 7, 33) + 58
 | |
|         elif type_def == 'openroadm_booster':
 | |
|             # model a zero-noise amp with "infinitely negative" (in dB) NF
 | |
|             nf_avg = float('-inf')
 | |
|         elif type_def == 'advanced_model':
 | |
|             nf_avg = polyval(nf_fit_coeff, -dg)
 | |
|         return nf_avg + pad, pad
 | |
| 
 | |
|     def _calc_nf(self, avg=False):
 | |
|         """nf calculation based on 2 models: self.params.nf_model.enabled from json import:
 | |
|         True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
 | |
|         False => polynomial fit based on self.params.nf_fit_coeff"""
 | |
|         # gain_min > gain_target TBD:
 | |
|         if self.params.type_def == 'dual_stage':
 | |
|             g1 = self.params.preamp_gain_flatmax
 | |
|             g2 = self.effective_gain - g1
 | |
|             nf1_avg, pad = self._nf(self.params.preamp_type_def,
 | |
|                                     self.params.preamp_nf_model,
 | |
|                                     self.params.preamp_nf_fit_coeff,
 | |
|                                     self.params.preamp_gain_min,
 | |
|                                     self.params.preamp_gain_flatmax,
 | |
|                                     g1)
 | |
|             # no padding expected for the 1stage because g1 = gain_max
 | |
|             nf2_avg, pad = self._nf(self.params.booster_type_def,
 | |
|                                     self.params.booster_nf_model,
 | |
|                                     self.params.booster_nf_fit_coeff,
 | |
|                                     self.params.booster_gain_min,
 | |
|                                     self.params.booster_gain_flatmax,
 | |
|                                     g2)
 | |
|             nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg - g1))
 | |
|             # no padding expected for the 1stage because g1 = gain_max
 | |
|             pad = 0
 | |
|         else:
 | |
|             nf_avg, pad = self._nf(self.params.type_def,
 | |
|                                    self.params.nf_model,
 | |
|                                    self.params.nf_fit_coeff,
 | |
|                                    self.params.gain_min,
 | |
|                                    self.params.gain_flatmax,
 | |
|                                    self.effective_gain)
 | |
| 
 | |
|         self.att_in = pad  # not used to attenuate carriers, only used in _repr_ and _str_
 | |
|         if avg:
 | |
|             return nf_avg
 | |
|         else:
 | |
|             return self.interpol_nf_ripple + nf_avg  # input VOA = 1 for 1 NF degradation
 | |
| 
 | |
|     def noise_profile(self, spectral_info: SpectralInformation):
 | |
|         """Computes amplifier ASE noise integrated over the signal bandwidth. This is calculated at amplifier input.
 | |
| 
 | |
|         :return: the asepower in W in the signal bandwidth bw for 96 channels
 | |
|         :return type: numpy array of float
 | |
| 
 | |
|         ASE power using per channel gain profile inputs:
 | |
| 
 | |
|             NF_dB - Noise figure in dB, vector of length number of channels or
 | |
|                     spectral slices
 | |
|             G_dB  - Actual gain calculated for the EDFA, vector of length number of
 | |
|                     channels or spectral slices
 | |
|             ffs     - Center frequency grid of the channels or spectral slices in
 | |
|                     THz, vector of length number of channels or spectral slices
 | |
|             dF    - width of each channel or spectral slice in THz,
 | |
|                     vector of length number of channels or spectral slices
 | |
| 
 | |
|         OUTPUT:
 | |
| 
 | |
|             ase_dBm - ase in dBm per channel or spectral slice
 | |
| 
 | |
|         NOTE:
 | |
| 
 | |
|             The output is the total ASE in the channel or spectral slice. For
 | |
|             50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
 | |
|             in 0.1nm, subtract 6dB.
 | |
| 
 | |
|         ONSR is usually quoted as channel power divided by
 | |
|         the ASE power in 0.1nm RBW, regardless of the width of the actual
 | |
|         channel.  This is a historical convention from the days when optical
 | |
|         signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
 | |
|         resolution of the OSAs that were used to measure spectral power which
 | |
|         were set to 0.1nm resolution for convenience.  Moving forward into
 | |
|         flexible grid and high baud rate signals, it may be convenient to begin
 | |
|         quoting power spectral density in the same BW for both signal and ASE,
 | |
|         e.g. 12.5GHz."""
 | |
| 
 | |
|         ase = h * spectral_info.baud_rate * spectral_info.frequency * db2lin(self.nf)  # W
 | |
|         return ase  # in W at amplifier input
 | |
| 
 | |
|     def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
 | |
|         """
 | |
|         Pin : input power / channel in W
 | |
| 
 | |
|         :param gain_ripple: design flat gain
 | |
|         :param dgt: design gain tilt
 | |
|         :param Pin: total input power in W
 | |
|         :param gp: Average gain setpoint in dB units (provisioned gain)
 | |
|         :param gtp: gain tilt setting (provisioned tilt)
 | |
|         :type gain_ripple: numpy.ndarray
 | |
|         :type dgt: numpy.ndarray
 | |
|         :type Pin: numpy.ndarray
 | |
|         :type gp: float
 | |
|         :type gtp: float
 | |
|         :return: gain profile in dBm, per channel or spectral slice
 | |
|         :rtype: numpy.ndarray
 | |
| 
 | |
|         Checking of output power clamping is implemented in interpol_params().
 | |
| 
 | |
| 
 | |
|         Based on:
 | |
| 
 | |
|             R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
 | |
|             gain tilt technique", Journal of Lightwave Technology, Vol. 18,
 | |
|             Iss. 3, Pp. 343-347, 2000.
 | |
| 
 | |
|             Ported from Matlab version written by David Boerges at Ciena.
 | |
|         """
 | |
| 
 | |
|         # TODO|jla: check what param should be used (currently length(dgt))
 | |
|         if len(self.interpol_dgt) == 1:
 | |
|             return array([self.effective_gain])
 | |
| 
 | |
|         # TODO|jla: find a way to use these or lose them. Primarily we should have
 | |
|         # a way to determine if exceeding the gain or output power of the amp
 | |
|         tot_in_power_db = self.pin_db  # Pin in W
 | |
| 
 | |
|         # linear fit to get the
 | |
|         p = polyfit(self.channel_freq, self.interpol_dgt, 1)
 | |
|         dgt_slope = p[0]
 | |
| 
 | |
|         # Calculate the target slope
 | |
|         targ_slope = -self.tilt_target / (self.params.f_max - self.params.f_min)
 | |
| 
 | |
|         # first estimate of DGT scaling
 | |
|         dgts1 = targ_slope / dgt_slope if dgt_slope != 0. else 0.
 | |
| 
 | |
|         # when simple_opt is true, make 2 attempts to compute gain and
 | |
|         # the internal voa value. This is currently here to provide direct
 | |
|         # comparison with original Matlab code. Will be removed.
 | |
|         # TODO|jla: replace with loop
 | |
| 
 | |
|         if not simple_opt:
 | |
|             return
 | |
| 
 | |
|         # first estimate of Er gain & VOA loss
 | |
|         g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
 | |
|             + array(self.interpol_dgt) * dgts1
 | |
|         voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
 | |
| 
 | |
|         # second estimate of amp ch gain using the channel input profile
 | |
|         g2nd = g1st - voa
 | |
| 
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(g2nd)))
 | |
|         dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
 | |
| 
 | |
|         # center estimate of amp ch gain
 | |
|         xcent = dgts2
 | |
|         gcent = g1st - voa + array(self.interpol_dgt) * xcent
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(gcent)))
 | |
|         gavg_cent = pout_db - tot_in_power_db
 | |
| 
 | |
|         # Lower estimate of amp ch gain
 | |
|         deltax = max(g1st) - min(g1st)
 | |
|         # if no ripple deltax = 0 and xlow = xcent: div 0
 | |
|         # TODO|jla: add check for flat gain response
 | |
|         if abs(deltax) <= 0.05:  # not enough ripple to consider calculation
 | |
|             return g1st - voa
 | |
| 
 | |
|         xlow = dgts2 - deltax
 | |
|         glow = g1st - voa + array(self.interpol_dgt) * xlow
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
 | |
|         gavg_low = pout_db - tot_in_power_db
 | |
| 
 | |
|         # upper gain estimate
 | |
|         xhigh = dgts2 + deltax
 | |
|         ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
 | |
|         gavg_high = pout_db - tot_in_power_db
 | |
| 
 | |
|         # compute slope
 | |
|         slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
 | |
|         slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
 | |
| 
 | |
|         if abs(self.effective_gain - gavg_cent) <= err_tolerance:
 | |
|             dgts3 = xcent
 | |
|         elif self.effective_gain < gavg_cent:
 | |
|             dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
 | |
|         else:
 | |
|             dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
 | |
| 
 | |
|         return g1st - voa + array(self.interpol_dgt) * dgts3
 | |
| 
 | |
|     def propagate(self, spectral_info):
 | |
|         """add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
 | |
|         # interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
 | |
|         self.interpol_params(spectral_info)
 | |
| 
 | |
|         ase = self.noise_profile(spectral_info)
 | |
|         spectral_info.ase += ase
 | |
| 
 | |
|         spectral_info.apply_gain_db(self.gprofile - self.out_voa)
 | |
|         spectral_info.pmd = sqrt(spectral_info.pmd ** 2 + self.params.pmd ** 2)
 | |
|         spectral_info.pdl = sqrt(spectral_info.pdl ** 2 + self.params.pdl ** 2)
 | |
| 
 | |
|     def update_pref(self, spectral_info):
 | |
|         spectral_info.pref = \
 | |
|             spectral_info.pref._replace(p_span0=spectral_info.pref.p_span0,
 | |
|                                         p_spani=spectral_info.pref.p_spani + self.effective_gain - self.out_voa)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self.propagate(spectral_info)
 | |
|         self.update_pref(spectral_info)
 | |
|         return spectral_info
 | 
