mirror of
				https://github.com/Telecominfraproject/oopt-gnpy.git
				synced 2025-10-31 01:57:54 +00:00 
			
		
		
		
	 029bac4b03
			
		
	
	029bac4b03
	
	
	
		
			
			This might have nothing to do with the ITU frequency grid (it's really just about a uniform distribution), so let's give it a more readable name and more readable parameters.
		
			
				
	
	
		
			895 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			895 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| '''
 | |
| gnpy.core.elements
 | |
| ==================
 | |
| 
 | |
| This module contains standard network elements.
 | |
| 
 | |
| A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
 | |
| object and returns a copy with appropriate fields affected. This structure
 | |
| represents spectral information that is "propogated" by this network element.
 | |
| Network elements must have only a local "view" of the network and propogate
 | |
| :class:`.info.SpectralInformation` using only this information. They should be independent and
 | |
| self-contained.
 | |
| 
 | |
| Network elements MUST implement two attributes .uid and .name representing a
 | |
| unique identifier and a printable name.
 | |
| '''
 | |
| 
 | |
| from numpy import abs, arange, array, exp, divide, errstate
 | |
| from numpy import interp, log10, mean, pi, polyfit, polyval, sum
 | |
| from scipy.constants import c, h
 | |
| from collections import namedtuple
 | |
| 
 | |
| from gnpy.core.node import Node
 | |
| from gnpy.core.units import UNITS
 | |
| from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
 | |
| from gnpy.core.science_utils import propagate_raman_fiber, _psi
 | |
| 
 | |
| class Transceiver(Node):
 | |
|     def __init__(self, *args, **kwargs):
 | |
|         super().__init__(*args, **kwargs)
 | |
|         self.osnr_ase_01nm = None
 | |
|         self.osnr_ase = None
 | |
|         self.osnr_nli = None
 | |
|         self.snr = None
 | |
|         self.passive = False
 | |
|         self.baud_rate = None
 | |
| 
 | |
|     def _calc_snr(self, spectral_info):    
 | |
|         with errstate(divide='ignore'):
 | |
|             self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
 | |
|             ratio_01nm = [lin2db(12.5e9/b_rate) for b_rate in self.baud_rate]
 | |
|         #set raw values to record original calculation, before update_snr()            
 | |
|             self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
 | |
|                             for c in spectral_info.carriers]
 | |
|             self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
 | |
|                                   in zip(self.raw_osnr_ase, ratio_01nm)]
 | |
|             self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
 | |
|                              for c in spectral_info.carriers]
 | |
|             self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli+c.power.ase)) 
 | |
|                         for c in spectral_info.carriers]
 | |
|             self.raw_snr_01nm = [snr - ratio for snr, ratio
 | |
|                                   in zip(self.raw_snr, ratio_01nm)]
 | |
| 
 | |
|             self.osnr_ase = self.raw_osnr_ase
 | |
|             self.osnr_ase_01nm = self.raw_osnr_ase_01nm
 | |
|             self.osnr_nli = self.raw_osnr_nli
 | |
|             self.snr = self.raw_snr
 | |
|             self.snr_01nm = self.raw_snr_01nm
 | |
|                         
 | |
|     def update_snr(self, *args):
 | |
|         """
 | |
|         snr_added in 0.1nm
 | |
|         compute SNR penalties such as transponder Tx_osnr or Roadm add_drop_osnr
 | |
|         only applied in request.py / propagate on the last Trasceiver node of the path
 | |
|         all penalties are added in a single call because to avoid uncontrolled cumul
 | |
|         """
 | |
|         #use raw_values so that the added snr penalties are not cumulated
 | |
|         snr_added = 0
 | |
|         for s in args:
 | |
|             snr_added += db2lin(-s)
 | |
|         snr_added = -lin2db(snr_added)
 | |
|         self.osnr_ase = list(map(lambda x,y:snr_sum(x,y,snr_added),
 | |
|                         self.raw_osnr_ase, self.baud_rate))
 | |
|         self.snr = list(map(lambda x,y:snr_sum(x,y,snr_added), 
 | |
|                         self.raw_snr, self.baud_rate))
 | |
|         self.osnr_ase_01nm = list(map(lambda x:snr_sum(x,12.5e9,snr_added), 
 | |
|                         self.raw_osnr_ase_01nm))
 | |
|         self.snr_01nm = list(map(lambda x:snr_sum(x,12.5e9,snr_added), 
 | |
|                         self.raw_snr_01nm))
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid'       : self.uid,
 | |
|                 'type'      : type(self).__name__,
 | |
|                 'metadata'      : {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                                     }
 | |
| }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}('
 | |
|                 f'uid={self.uid!r}, '
 | |
|                 f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
 | |
|                 f'osnr_ase={self.osnr_ase!r}, '
 | |
|                 f'osnr_nli={self.osnr_nli!r}, '
 | |
|                 f'snr={self.snr!r})')
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.snr is None or self.osnr_ase is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
| 
 | |
|         snr = round(mean(self.snr),2)
 | |
|         osnr_ase = round(mean(self.osnr_ase),2)
 | |
|         osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
 | |
|         snr_01nm = round(mean(self.snr_01nm),2)
 | |
| 
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
| 
 | |
|                           f'  OSNR ASE (0.1nm, dB):      {osnr_ase_01nm:.2f}',
 | |
|                           f'  OSNR ASE (signal bw, dB):  {osnr_ase:.2f}',
 | |
|                           f'  SNR total (signal bw, dB): {snr:.2f}',
 | |
|                           f'  SNR total (0.1nm, dB): {snr_01nm:.2f}'])
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self._calc_snr(spectral_info)
 | |
|         return spectral_info
 | |
| 
 | |
| RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr restrictions')
 | |
| 
 | |
| class Roadm(Node):
 | |
|     def __init__(self, *args, params, **kwargs):
 | |
|         super().__init__(*args, params=RoadmParams(**params), **kwargs)
 | |
|         self.loss = 0 #auto-design interest
 | |
|         self.effective_loss = None
 | |
|         self.effective_pch_out_db = self.params.target_pch_out_db
 | |
|         self.passive = True
 | |
|         self.restrictions = self.params.restrictions
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid'       : self.uid,
 | |
|                 'type'      : type(self).__name__,
 | |
|                 'params'    : {
 | |
|                     'target_pch_out_db' : self.effective_pch_out_db,
 | |
|                     'restrictions'      : self.restrictions
 | |
|                     },
 | |
|                 'metadata'      : {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  effective loss (dB):  {self.effective_loss:.2f}',
 | |
|                           f'  pch out (dBm):        {self.effective_pch_out_db!r}'])
 | |
| 
 | |
|     def propagate(self, pref, *carriers):
 | |
|         #pin_target and loss are read from eqpt_config.json['Roadm']
 | |
|         #all ingress channels in xpress are set to this power level
 | |
|         #but add channels are not, so we define an effective loss
 | |
|         #in the case of add channels
 | |
|         self.effective_pch_out_db = min(pref.p_spani, self.params.target_pch_out_db)
 | |
|         self.effective_loss = pref.p_spani - self.effective_pch_out_db
 | |
|         carriers_power = array([c.power.signal +c.power.nli+c.power.ase for c in carriers])
 | |
|         carriers_att = list(map(lambda x : lin2db(x*1e3)-self.params.target_pch_out_db, carriers_power))
 | |
|         exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default = 0)
 | |
|         carriers_att = list(map(lambda x: db2lin(x+exceeding_att), carriers_att))
 | |
|         for carrier_att, carrier in zip(carriers_att, carriers) :
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace( signal = pwr.signal/carrier_att,
 | |
|                                 nli = pwr.nli/carrier_att,
 | |
|                                 ase = pwr.ase/carrier_att)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         return spectral_info._replace(carriers=carriers, pref=pref)
 | |
| 
 | |
| FusedParams = namedtuple('FusedParams', 'loss')
 | |
| 
 | |
| class Fused(Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if params is None:
 | |
|             # default loss value if not mentioned in loaded network json
 | |
|             params = {'loss':1}
 | |
|         super().__init__(*args, params=FusedParams(**params), **kwargs)
 | |
|         self.loss = self.params.loss
 | |
|         self.passive = True
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid'       : self.uid,
 | |
|                 'type'      : type(self).__name__,
 | |
|                 'params'    :{
 | |
|                     'loss': self.loss
 | |
|                 },
 | |
|                 'metadata'      : {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                                     }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  loss (dB): {self.loss:.2f}'])
 | |
| 
 | |
|     def propagate(self, *carriers):
 | |
|         attenuation = db2lin(self.loss)
 | |
| 
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace(signal=pwr.signal/attenuation,
 | |
|                                nli=pwr.nli/attenuation,
 | |
|                                ase=pwr.ase/attenuation)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         carriers = tuple(self.propagate(*spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         return spectral_info._replace(carriers=carriers, pref=pref)
 | |
| 
 | |
| FiberParams = namedtuple('FiberParams', 'type_variety length loss_coef length_units \
 | |
|                                          att_in con_in con_out dispersion gamma')
 | |
| 
 | |
| class Fiber(Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if params is None:
 | |
|             params = {}
 | |
|         if 'con_in' not in params:
 | |
|             # if not defined in the network json connector loss in/out
 | |
|             # the None value will be updated in network.py[build_network]
 | |
|             # with default values from eqpt_config.json[Spans]
 | |
|             params['con_in'] = None
 | |
|             params['con_out'] = None
 | |
|         if 'att_in' not in params:
 | |
|             #fixed attenuator for padding
 | |
|             params['att_in'] = 0
 | |
| 
 | |
|         super().__init__(*args, params=FiberParams(**params), **kwargs)
 | |
|         self.type_variety = self.params.type_variety
 | |
|         self.length = self.params.length * UNITS[self.params.length_units] # in m
 | |
|         self.loss_coef = self.params.loss_coef * 1e-3 # lineic loss dB/m
 | |
|         self.lin_loss_coef = self.params.loss_coef / (20 * log10(exp(1)))
 | |
|         self.att_in = self.params.att_in
 | |
|         self.con_in = self.params.con_in
 | |
|         self.con_out = self.params.con_out
 | |
|         self.dispersion = self.params.dispersion  # s/m/m
 | |
|         self.gamma = self.params.gamma # 1/W/m
 | |
|         self.pch_out_db = None
 | |
|         self.carriers_in = None
 | |
|         self.carriers_out = None
 | |
|         # TODO|jla: discuss factor 2 in the linear lineic attenuation
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid'           : self.uid,
 | |
|                 'type'          : type(self).__name__,
 | |
|                 'type_variety'  : self.type_variety,
 | |
|                 'params'        : {
 | |
|                 #have to specify each because namedtupple cannot be updated :(
 | |
|                     'type_variety'  : self.type_variety,
 | |
|                     'length'        : self.length/UNITS[self.params.length_units],
 | |
|                     'loss_coef'     : self.loss_coef*1e3,
 | |
|                     'length_units'  : self.params.length_units,
 | |
|                     'att_in'        : self.att_in,
 | |
|                     'con_in'        : self.con_in,
 | |
|                     'con_out'       : self.con_out
 | |
|                                 },
 | |
|                 'metadata'      : {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                                 }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, length={round(self.length*1e-3,1)!r}km, loss={round(self.loss,1)!r}dB)'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__}          {self.uid}',
 | |
|                           f'  type_variety:                {self.type_variety}',
 | |
|                           f'  length (km):                 {round(self.length*1e-3):.2f}',
 | |
|                           f'  pad att_in (dB):             {self.att_in:.2f}',
 | |
|                           f'  total loss (dB):             {self.loss:.2f}',
 | |
|                           f'  (includes conn loss (dB) in: {self.con_in:.2f} out: {self.con_out:.2f})',
 | |
|                           f'  (conn loss out includes EOL margin defined in eqpt_config.json)',
 | |
|                           f'  pch out (dBm): {self.pch_out_db!r}'])
 | |
| 
 | |
|     @property
 | |
|     def fiber_loss(self):
 | |
|         """Fiber loss in dB, not including padding attenuator"""
 | |
|         return self.loss_coef * self.length + self.con_in + self.con_out
 | |
| 
 | |
|     @property
 | |
|     def loss(self):
 | |
|         """total loss including padding att_in: useful for polymorphism with roadm loss"""
 | |
|         return self.loss_coef * self.length + self.con_in + self.con_out + self.att_in
 | |
| 
 | |
|     @property
 | |
|     def passive(self):
 | |
|         return True
 | |
| 
 | |
|     @property
 | |
|     def lin_attenuation(self):
 | |
|         return db2lin(self.length * self.loss_coef)
 | |
| 
 | |
|     @property
 | |
|     def effective_length(self):
 | |
|         _, alpha = self.dbkm_2_lin()
 | |
|         leff = (1 - exp(-2 * alpha * self.length)) / (2 * alpha)
 | |
|         return leff
 | |
| 
 | |
|     @property
 | |
|     def asymptotic_length(self):
 | |
|         _, alpha = self.dbkm_2_lin()
 | |
|         aleff = 1 / (2 * alpha)
 | |
|         return aleff
 | |
| 
 | |
|     def carriers(self, loc, attr):
 | |
|         """retrieve carriers information
 | |
| 
 | |
|         :param loc: (in, out) of the class element
 | |
|         :param attr: (ase, nli, signal, total) power information
 | |
|         """
 | |
|         if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
 | |
|             yield None
 | |
|             return
 | |
|         loc_attr = 'carriers_'+loc
 | |
|         for c in getattr(self, loc_attr) :
 | |
|             if attr == 'total':
 | |
|                 yield c.power.ase+c.power.nli+c.power.signal
 | |
|             else:
 | |
|                 yield c.power._asdict().get(attr, None)
 | |
| 
 | |
|     def beta2(self, ref_wavelength=1550e-9):
 | |
|         """Returns beta2 from dispersion parameter.
 | |
|         Dispersion is entered in ps/nm/km.
 | |
|         Disperion can be a numpy array or a single value.
 | |
| 
 | |
|         :param ref_wavelength: can be a numpy array; default: 1550nm
 | |
|         """
 | |
|         # TODO|jla: discuss beta2 as method or attribute
 | |
|         D = abs(self.dispersion)
 | |
|         b2 = (ref_wavelength ** 2) * D / (2 * pi * c)  # 10^21 scales [ps^2/km]
 | |
|         return b2 # s/Hz/m
 | |
| 
 | |
|     def dbkm_2_lin(self):
 | |
|         """calculates the linear loss coefficient"""
 | |
|         # linear loss coefficient in dB/km^-1
 | |
|         alpha_pcoef = self.loss_coef
 | |
|         # linear loss field amplitude coefficient in m^-1
 | |
|         alpha_acoef = alpha_pcoef / (2 * 10 * log10(exp(1)))
 | |
|         return alpha_pcoef, alpha_acoef
 | |
| 
 | |
|     def _gn_analytic(self, carrier, *carriers):
 | |
|         """Computes the nonlinear interference power on a single carrier.
 | |
|         The method uses eq. 120 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__.
 | |
| 
 | |
|         :param carrier: the signal under analysis
 | |
|         :param carriers: the full WDM comb
 | |
|         :return: carrier_nli: the amount of nonlinear interference in W on the under analysis
 | |
|         """
 | |
| 
 | |
|         g_nli = 0
 | |
|         for interfering_carrier in carriers:
 | |
|             psi = _psi(carrier, interfering_carrier, beta2=self.beta2(), asymptotic_length=self.asymptotic_length)
 | |
|             g_nli += (interfering_carrier.power.signal/interfering_carrier.baud_rate)**2 \
 | |
|                      * (carrier.power.signal/carrier.baud_rate) * psi
 | |
| 
 | |
|         g_nli *= (16 / 27) * (self.gamma * self.effective_length)**2 \
 | |
|                  / (2 * pi * abs(self.beta2()) * self.asymptotic_length)
 | |
| 
 | |
|         carrier_nli = carrier.baud_rate * g_nli
 | |
|         return carrier_nli
 | |
| 
 | |
|     def propagate(self, *carriers):
 | |
| 
 | |
|         # apply connector_att_in on all carriers before computing gn analytics  premiere partie pas bonne
 | |
|         attenuation = db2lin(self.con_in + self.att_in)
 | |
| 
 | |
|         chan = []
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace(signal=pwr.signal/attenuation,
 | |
|                                nli=pwr.nli/attenuation,
 | |
|                                ase=pwr.ase/attenuation)
 | |
|             carrier = carrier._replace(power=pwr)
 | |
|             chan.append(carrier)
 | |
| 
 | |
|         carriers = tuple(f for f in chan)
 | |
| 
 | |
|         # propagate in the fiber and apply attenuation out
 | |
|         attenuation = db2lin(self.con_out)
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             carrier_nli = self._gn_analytic(carrier, *carriers)
 | |
|             pwr = pwr._replace(signal=pwr.signal/self.lin_attenuation/attenuation,
 | |
|                                nli=(pwr.nli+carrier_nli)/self.lin_attenuation/attenuation,
 | |
|                                ase=pwr.ase/self.lin_attenuation/attenuation)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         self.pch_out_db = round(pref.p_spani - self.loss, 2)
 | |
|         return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self.carriers_in = spectral_info.carriers
 | |
|         carriers = tuple(self.propagate(*spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         self.carriers_out = carriers
 | |
|         return spectral_info._replace(carriers=carriers, pref=pref)
 | |
| 
 | |
| RamanFiberParams = namedtuple('RamanFiberParams', 'type_variety length loss_coef length_units \
 | |
|                                          att_in con_in con_out dispersion gamma raman_efficiency')
 | |
| 
 | |
| class RamanFiber(Fiber):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if params is None:
 | |
|             params = {}
 | |
|         if 'con_in' not in params:
 | |
|             # if not defined in the network json connector loss in/out
 | |
|             # the None value will be updated in network.py[build_network]
 | |
|             # with default values from eqpt_config.json[Spans]
 | |
|             params['con_in'] = None
 | |
|             params['con_out'] = None
 | |
|         if 'att_in' not in params:
 | |
|             #fixed attenuator for padding
 | |
|             params['att_in'] = 0
 | |
| 
 | |
|         # TODO: can we re-use the Fiber constructor in a better way?
 | |
|         Node.__init__(self, *args, params=RamanFiberParams(**params), **kwargs)
 | |
|         self.type_variety = self.params.type_variety
 | |
|         self.length = self.params.length * UNITS[self.params.length_units] # in m
 | |
|         self.loss_coef = self.params.loss_coef * 1e-3 # lineic loss dB/m
 | |
|         self.lin_loss_coef = self.params.loss_coef / (20 * log10(exp(1)))
 | |
|         self.att_in = self.params.att_in
 | |
|         self.con_in = self.params.con_in
 | |
|         self.con_out = self.params.con_out
 | |
|         self.dispersion = self.params.dispersion  # s/m/m
 | |
|         self.gamma = self.params.gamma # 1/W/m
 | |
|         self.pch_out_db = None
 | |
|         self.carriers_in = None
 | |
|         self.carriers_out = None
 | |
|         # TODO|jla: discuss factor 2 in the linear lineic attenuation
 | |
| 
 | |
|     @property
 | |
|     def sim_params(self):
 | |
|         return self._sim_params
 | |
| 
 | |
|     @sim_params.setter
 | |
|     def sim_params(self, sim_params=None):
 | |
|         self._sim_params = sim_params
 | |
| 
 | |
|     def update_pref(self, pref, *carriers):
 | |
|         pch_out_db = lin2db(mean([carrier.power.signal for carrier in carriers])) + 30
 | |
|         self.pch_out_db = round(pch_out_db, 2)
 | |
|         return pref._replace(p_span0=pref.p_span0, p_spani=self.pch_out_db)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self.carriers_in = spectral_info.carriers
 | |
|         carriers = tuple(self.propagate(*spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref, *carriers)
 | |
|         self.carriers_out = carriers
 | |
|         return spectral_info._replace(carriers=carriers, pref=pref)
 | |
| 
 | |
|     def propagate(self, *carriers):
 | |
|         for propagated_carrier in propagate_raman_fiber(self, *carriers):
 | |
|             yield propagated_carrier
 | |
| 
 | |
| class EdfaParams:
 | |
|     def __init__(self, **params):
 | |
|         self.update_params(params)
 | |
|         if params == {}:
 | |
|             self.type_variety = ''
 | |
|             self.type_def = ''
 | |
|             # self.gain_flatmax = 0
 | |
|             # self.gain_min = 0
 | |
|             # self.p_max = 0
 | |
|             # self.nf_model = None
 | |
|             # self.nf_fit_coeff = None
 | |
|             # self.nf_ripple = None
 | |
|             # self.dgt = None
 | |
|             # self.gain_ripple = None
 | |
|             # self.out_voa_auto = False
 | |
|             # self.allowed_for_design = None
 | |
| 
 | |
|     def update_params(self, kwargs):
 | |
|         for k,v in kwargs.items() :
 | |
|             setattr(self, k, update_params(**v)
 | |
|                 if isinstance(v, dict) else v)
 | |
| 
 | |
| class EdfaOperational:
 | |
|     default_values = \
 | |
|     {
 | |
|         'gain_target':      None,
 | |
|         'delta_p':          None,
 | |
|         'out_voa':          None,        
 | |
|         'tilt_target':      0
 | |
|     }
 | |
| 
 | |
|     def __init__(self, **operational):
 | |
|         self.update_attr(operational)
 | |
| 
 | |
|     def update_attr(self, kwargs):
 | |
|         clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
 | |
|         for k,v in self.default_values.items():
 | |
|             setattr(self, k, clean_kwargs.get(k,v))
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}('
 | |
|                 f'gain_target={self.gain_target!r}, '
 | |
|                 f'tilt_target={self.tilt_target!r})')
 | |
| 
 | |
| class Edfa(Node):
 | |
|     def __init__(self, *args, params=None, operational=None, **kwargs):
 | |
|         if params is None:
 | |
|             params = {}
 | |
|         if operational is None:
 | |
|             operational = {}
 | |
|         super().__init__(
 | |
|             *args,
 | |
|             params=EdfaParams(**params),
 | |
|             operational=EdfaOperational(**operational),
 | |
|             **kwargs
 | |
|         )
 | |
|         self.interpol_dgt = None # interpolated dynamic gain tilt
 | |
|         self.interpol_gain_ripple = None # gain ripple
 | |
|         self.interpol_nf_ripple = None # nf_ripple
 | |
|         self.channel_freq = None # SI channel frequencies
 | |
|         # nf, gprofile, pin and pout attributes are set by interpol_params
 | |
|         self.nf = None # dB edfa nf at operational.gain_target
 | |
|         self.gprofile = None
 | |
|         self.pin_db = None
 | |
|         self.nch = None
 | |
|         self.pout_db = None
 | |
|         self.target_pch_out_db = None
 | |
|         self.effective_pch_out_db = None
 | |
|         self.passive = False
 | |
|         self.att_in = None
 | |
|         self.carriers_in = None
 | |
|         self.carriers_out = None
 | |
|         self.effective_gain = self.operational.gain_target
 | |
|         self.delta_p = self.operational.delta_p #delta P with Pref (power swwep) in power mode
 | |
|         self.tilt_target = self.operational.tilt_target
 | |
|         self.out_voa = self.operational.out_voa
 | |
| 
 | |
|     @property
 | |
|     def to_json(self):
 | |
|         return {'uid'           : self.uid,
 | |
|                 'type'          : type(self).__name__,
 | |
|                 'type_variety'  : self.params.type_variety,
 | |
|                 'operational'   : {
 | |
|                     'gain_target' : self.effective_gain,
 | |
|                     'delta_p'     : self.delta_p,
 | |
|                     'tilt_target' : self.tilt_target,
 | |
|                     'out_voa'     : self.out_voa
 | |
|                 },
 | |
|                 'metadata'      : {
 | |
|                     'location': self.metadata['location']._asdict()
 | |
|                                     }
 | |
|                 }
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}(uid={self.uid!r}, '
 | |
|                 f'type_variety={self.params.type_variety!r}, '
 | |
|                 f'interpol_dgt={self.interpol_dgt!r}, '
 | |
|                 f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
 | |
|                 f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
 | |
|                 f'channel_freq={self.channel_freq!r}, '
 | |
|                 f'nf={self.nf!r}, '
 | |
|                 f'gprofile={self.gprofile!r}, '
 | |
|                 f'pin_db={self.pin_db!r}, '
 | |
|                 f'pout_db={self.pout_db!r})')
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.pin_db is None or self.pout_db is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
|         nf = mean(self.nf)
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  type_variety:           {self.params.type_variety}',
 | |
|                           f'  effective gain(dB):     {self.effective_gain:.2f}',
 | |
|                           f'  (before att_in and before output VOA)',
 | |
|                           f'  noise figure (dB):      {nf:.2f}',
 | |
|                           f'  (including att_in)',
 | |
|                           f'  pad att_in (dB):        {self.att_in:.2f}',
 | |
|                           f'  Power In (dBm):         {self.pin_db:.2f}',
 | |
|                           f'  Power Out (dBm):        {self.pout_db:.2f}',
 | |
|                           f'  Delta_P (dB):           {self.delta_p!r}',
 | |
|                           f'  target pch (dBm):       {self.target_pch_out_db!r}',
 | |
|                           f'  effective pch (dBm):    {self.effective_pch_out_db!r}',
 | |
|                           f'  output VOA (dB):        {self.out_voa:.2f}'])
 | |
| 
 | |
|     def carriers(self, loc, attr):
 | |
|         """retrieve carriers information
 | |
| 
 | |
|         :param loc: (in, out) of the class element
 | |
|         :param attr: (ase, nli, signal, total) power information
 | |
|         """
 | |
|         if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
 | |
|             yield None
 | |
|             return
 | |
|         loc_attr = 'carriers_'+loc
 | |
|         for c in getattr(self, loc_attr) :
 | |
|             if attr == 'total':
 | |
|                 yield c.power.ase+c.power.nli+c.power.signal
 | |
|             else:
 | |
|                 yield c.power._asdict().get(attr, None)
 | |
| 
 | |
|     def interpol_params(self, frequencies, pin, baud_rates, pref):
 | |
|         """interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
 | |
|         set the edfa class __init__ None parameters :
 | |
|                 self.channel_freq, self.nf, self.interpol_dgt and self.interpol_gain_ripple
 | |
|         """
 | |
|         # TODO|jla: read amplifier actual frequencies from additional params in json
 | |
|         amplifier_freq = arrange_frequencies(len(self.params.dgt), self.params.f_min, self.params.f_max) # Hz
 | |
|         self.channel_freq = frequencies
 | |
|         self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
 | |
| 
 | |
|         self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
 | |
|         self.interpol_nf_ripple =interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
 | |
| 
 | |
|         self.nch = frequencies.size
 | |
|         self.pin_db = lin2db(sum(pin*1e3))
 | |
|         
 | |
|         """in power mode: delta_p is defined and can be used to calculate the power target
 | |
|         This power target is used calculate the amplifier gain"""
 | |
|         if self.delta_p is not None:
 | |
|             self.target_pch_out_db = round(self.delta_p + pref.p_span0, 2)
 | |
|             self.effective_gain = self.target_pch_out_db - pref.p_spani
 | |
| 
 | |
|         """check power saturation and correct effective gain & power accordingly:"""            
 | |
|         self.effective_gain = min(  
 | |
|                                     self.effective_gain, 
 | |
|                                     self.params.p_max - (pref.p_spani + pref.neq_ch)
 | |
|                                     )
 | |
|         #print(self.uid, self.effective_gain, self.operational.gain_target)
 | |
|         self.effective_pch_out_db = round(pref.p_spani + self.effective_gain, 2)
 | |
| 
 | |
|         """check power saturation and correct target_gain accordingly:"""
 | |
|         #print(self.uid, self.effective_gain, self.pin_db, pref.p_spani)
 | |
|         self.nf = self._calc_nf()
 | |
|         self.gprofile = self._gain_profile(pin)
 | |
| 
 | |
|         pout = (pin + self.noise_profile(baud_rates))*db2lin(self.gprofile)
 | |
|         self.pout_db = lin2db(sum(pout*1e3))
 | |
|         # ase & nli are only calculated in signal bandwidth
 | |
|         #    pout_db is not the absolute full output power (negligible if sufficient channels)
 | |
| 
 | |
|     def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
 | |
|         #if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax 
 | |
|         #gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
 | |
|         pad = max(gain_min - gain_target, 0)
 | |
|         gain_target += pad
 | |
|         dg = max(gain_flatmax - gain_target, 0)
 | |
|         if type_def == 'variable_gain':
 | |
|             g1a = gain_target - nf_model.delta_p - dg
 | |
|             nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2)/db2lin(g1a))            
 | |
|         elif type_def == 'fixed_gain':
 | |
|             nf_avg = nf_model.nf0
 | |
|         elif type_def == 'openroadm':
 | |
|             pin_ch = self.pin_db - lin2db(self.nch)
 | |
|             # model OSNR = f(Pin)
 | |
|             nf_avg = pin_ch - polyval(nf_model.nf_coef, pin_ch) + 58
 | |
|         elif type_def == 'advanced_model':
 | |
|             nf_avg = polyval(nf_fit_coeff, -dg)
 | |
|         else:
 | |
|             assert False, "Unrecognized amplifier type, this should have been checked by the JSON loader"
 | |
|         return nf_avg+pad, pad
 | |
| 
 | |
|     def _calc_nf(self, avg = False):
 | |
|         """nf calculation based on 2 models: self.params.nf_model.enabled from json import:
 | |
|         True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
 | |
|         False => polynomial fit based on self.params.nf_fit_coeff"""
 | |
|         # gain_min > gain_target TBD:
 | |
|         if self.params.type_def == 'dual_stage':
 | |
|             g1 = self.params.preamp_gain_flatmax
 | |
|             g2 = self.effective_gain - g1
 | |
|             nf1_avg, pad = self._nf( self.params.preamp_type_def, 
 | |
|                                 self.params.preamp_nf_model,
 | |
|                                 self.params.preamp_nf_fit_coeff,
 | |
|                                 self.params.preamp_gain_min,
 | |
|                                 self.params.preamp_gain_flatmax, 
 | |
|                                 g1)
 | |
|             #no padding expected for the 1stage because g1 = gain_max
 | |
|             nf2_avg, pad = self._nf( self.params.booster_type_def,
 | |
|                                 self.params.booster_nf_model,
 | |
|                                 self.params.booster_nf_fit_coeff,
 | |
|                                 self.params.booster_gain_min,
 | |
|                                 self.params.booster_gain_flatmax, 
 | |
|                                 g2)
 | |
|             nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg-g1))
 | |
|             #no padding expected for the 1stage because g1 = gain_max            
 | |
|             pad = 0
 | |
|         else:      
 | |
|             nf_avg, pad = self._nf(  self.params.type_def,
 | |
|                                 self.params.nf_model,
 | |
|                                 self.params.nf_fit_coeff,
 | |
|                                 self.params.gain_min,
 | |
|                                 self.params.gain_flatmax,
 | |
|                                 self.effective_gain)
 | |
| 
 | |
|         self.att_in = pad # not used to attenuate carriers, only used in _repr_ and _str_
 | |
|         if avg:
 | |
|             return nf_avg
 | |
|         else:
 | |
|             return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
 | |
| 
 | |
|     def noise_profile(self, df):
 | |
|         """noise_profile(bw) computes amplifier ase (W) in signal bw (Hz)
 | |
|         noise is calculated at amplifier input
 | |
| 
 | |
|         :bw: signal bandwidth = baud rate in Hz
 | |
|         :type bw: float
 | |
| 
 | |
|         :return: the asepower in W in the signal bandwidth bw for 96 channels
 | |
|         :return type: numpy array of float
 | |
| 
 | |
|         ASE POWER USING PER CHANNEL GAIN PROFILE
 | |
|         INPUTS:
 | |
|         NF_dB - Noise figure in dB, vector of length number of channels or
 | |
|                 spectral slices
 | |
|         G_dB  - Actual gain calculated for the EDFA, vector of length number of
 | |
|                 channels or spectral slices
 | |
|         ffs     - Center frequency grid of the channels or spectral slices in
 | |
|                 THz, vector of length number of channels or spectral slices
 | |
|         dF    - width of each channel or spectral slice in THz,
 | |
|                 vector of length number of channels or spectral slices
 | |
|         OUTPUT:
 | |
|             ase_dBm - ase in dBm per channel or spectral slice
 | |
|         NOTE: the output is the total ASE in the channel or spectral slice. For
 | |
|         50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
 | |
|         in 0.1nm, subtract 6dB.
 | |
| 
 | |
|         ONSR is usually quoted as channel power divided by
 | |
|         the ASE power in 0.1nm RBW, regardless of the width of the actual
 | |
|         channel.  This is a historical convention from the days when optical
 | |
|         signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
 | |
|         resolution of the OSAs that were used to measure spectral power which
 | |
|         were set to 0.1nm resolution for convenience.  Moving forward into
 | |
|         flexible grid and high baud rate signals, it may be convenient to begin
 | |
|         quoting power spectral density in the same BW for both signal and ASE,
 | |
|         e.g. 12.5GHz."""
 | |
| 
 | |
|         ase = h * df * self.channel_freq * db2lin(self.nf) # W
 | |
|         return ase # in W at amplifier input
 | |
| 
 | |
|     def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
 | |
|         """
 | |
|         Pin : input power / channel in W
 | |
| 
 | |
|         :param gain_ripple: design flat gain
 | |
|         :param dgt: design gain tilt
 | |
|         :param Pin: total input power in W
 | |
|         :param gp: Average gain setpoint in dB units
 | |
|         :param gtp: gain tilt setting
 | |
|         :type gain_ripple: numpy.ndarray
 | |
|         :type dgt: numpy.ndarray
 | |
|         :type Pin: numpy.ndarray
 | |
|         :type gp: float
 | |
|         :type gtp: float
 | |
|         :return: gain profile in dBm
 | |
|         :rtype: numpy.ndarray
 | |
| 
 | |
|         AMPLIFICATION USING INPUT PROFILE
 | |
|         INPUTS:
 | |
|             gain_ripple - vector of length number of channels or spectral slices
 | |
|             DGT - vector of length number of channels or spectral slices
 | |
|             Pin - input powers vector of length number of channels or
 | |
|             spectral slices
 | |
|             Gp  - provisioned gain length 1
 | |
|             GTp - provisioned tilt length 1
 | |
| 
 | |
|         OUTPUT:
 | |
|             amp gain per channel or spectral slice
 | |
|         NOTE: there is no checking done for violations of the total output
 | |
|             power capability of the amp.
 | |
|         EDIT OF PREVIOUS NOTE: power violation now added in interpol_params
 | |
|             Ported from Matlab version written by David Boerges at Ciena.
 | |
|         Based on:
 | |
|             R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
 | |
|             gain
 | |
|             tilt technique", Journal of Lightwave Technology, Vol. 18, Iss. 3,
 | |
|             Pp. 343-347, 2000.
 | |
|         """
 | |
| 
 | |
|         # TODO|jla: check what param should be used (currently length(dgt))
 | |
|         nb_channel = arange(len(self.interpol_dgt))
 | |
| 
 | |
|         # TODO|jla: find a way to use these or lose them. Primarily we should have
 | |
|         # a way to determine if exceeding the gain or output power of the amp
 | |
|         tot_in_power_db = self.pin_db # Pin in W
 | |
| 
 | |
|         # linear fit to get the
 | |
|         p = polyfit(nb_channel, self.interpol_dgt, 1)
 | |
|         dgt_slope = p[0]
 | |
| 
 | |
|         # Calculate the target slope - currently assumes equal spaced channels
 | |
|         # TODO|jla: support arbitrary channel spacing
 | |
|         targ_slope = self.tilt_target / (len(nb_channel) - 1)
 | |
| 
 | |
|         # first estimate of DGT scaling
 | |
|         if abs(dgt_slope) > 0.001: # check for zero value due to flat dgt
 | |
|             dgts1 = targ_slope / dgt_slope
 | |
|         else:
 | |
|             dgts1 = 0
 | |
| 
 | |
|         # when simple_opt is true, make 2 attempts to compute gain and
 | |
|         # the internal voa value. This is currently here to provide direct
 | |
|         # comparison with original Matlab code. Will be removed.
 | |
|         # TODO|jla: replace with loop
 | |
| 
 | |
|         if not simple_opt:
 | |
|             return
 | |
| 
 | |
|         # first estimate of Er gain & VOA loss
 | |
|         g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
 | |
|                + array(self.interpol_dgt) * dgts1
 | |
|         voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
 | |
| 
 | |
|         # second estimate of amp ch gain using the channel input profile
 | |
|         g2nd = g1st - voa
 | |
| 
 | |
|         pout_db = lin2db(sum(pin*1e3*db2lin(g2nd)))
 | |
|         dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
 | |
| 
 | |
|         # center estimate of amp ch gain
 | |
|         xcent = dgts2
 | |
|         gcent = g1st - voa + array(self.interpol_dgt) * xcent
 | |
|         pout_db = lin2db(sum(pin*1e3*db2lin(gcent)))
 | |
|         gavg_cent = pout_db - tot_in_power_db
 | |
| 
 | |
|         # Lower estimate of amp ch gain
 | |
|         deltax = max(g1st) - min(g1st)
 | |
|         # if no ripple deltax = 0 and xlow = xcent: div 0
 | |
|         # TODO|jla: add check for flat gain response
 | |
|         if abs(deltax) <= 0.05: # not enough ripple to consider calculation
 | |
|             return g1st - voa
 | |
| 
 | |
|         xlow = dgts2 - deltax
 | |
|         glow = g1st - voa + array(self.interpol_dgt) * xlow
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
 | |
|         gavg_low = pout_db - tot_in_power_db
 | |
| 
 | |
|         # upper gain estimate
 | |
|         xhigh = dgts2 + deltax
 | |
|         ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
 | |
|         gavg_high = pout_db - tot_in_power_db
 | |
| 
 | |
|         # compute slope
 | |
|         slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
 | |
|         slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
 | |
| 
 | |
|         if abs(self.effective_gain - gavg_cent) <= err_tolerance:
 | |
|             dgts3 = xcent
 | |
|         elif self.effective_gain < gavg_cent:
 | |
|             dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
 | |
|         else:
 | |
|             dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
 | |
| 
 | |
|         return g1st - voa + array(self.interpol_dgt) * dgts3
 | |
| 
 | |
|     def propagate(self, pref, *carriers):
 | |
|         """add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
 | |
|         pin = array([c.power.signal+c.power.nli+c.power.ase for c in carriers]) # pin in W
 | |
|         freq = array([c.frequency for c in carriers])
 | |
|         brate = array([c.baud_rate for c in carriers])
 | |
|         # interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
 | |
|         self.interpol_params(freq, pin, brate, pref)
 | |
| 
 | |
|         gains = db2lin(self.gprofile)
 | |
|         carrier_ases = self.noise_profile(brate)
 | |
|         att = db2lin(self.out_voa)
 | |
| 
 | |
|         for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace(signal=pwr.signal*gain/att,
 | |
|                                nli=pwr.nli*gain/att,
 | |
|                                ase=(pwr.ase+carrier_ase)*gain/att)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         return pref._replace(p_span0=pref.p_span0,
 | |
|                             p_spani=pref.p_spani + self.effective_gain - self.out_voa)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self.carriers_in = spectral_info.carriers
 | |
|         carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         self.carriers_out = carriers
 | |
|         return spectral_info._replace(carriers=carriers, pref=pref)
 |