Files
oopt-gnpy/gnpy/core/utils.py
Jan Kundrát 029bac4b03 utils: more descriptive name for itufl
This might have nothing to do with the ITU frequency grid (it's really
just about a uniform distribution), so let's give it a more readable
name and more readable parameters.
2019-10-06 20:43:50 +02:00

226 lines
6.2 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.utils
===============
This module contains utility functions that are used with gnpy.
'''
import json
from csv import writer
import numpy as np
from numpy import pi, cos, sqrt, log10
from scipy import constants
def load_json(filename):
with open(filename, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def save_json(obj, filename):
with open(filename, 'w', encoding='utf-8') as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
def write_csv(obj, filename):
"""
convert dictionary items to a csv file
the dictionary format :
{'result category 1':
[
# 1st line of results
{'header 1' : value_xxx,
'header 2' : value_yyy},
# 2nd line of results: same headers, different results
{'header 1' : value_www,
'header 2' : value_zzz}
],
'result_category 2':
[
{},{}
]
}
the generated csv file will be:
result_category 1
header 1 header 2
value_xxx value_yyy
value_www value_zzz
result_category 2
...
"""
with open(filename, 'w', encoding='utf-8') as f:
w = writer(f)
for data_key, data_list in obj.items():
#main header
w.writerow([data_key])
#sub headers:
headers = [_ for _ in data_list[0].keys()]
w.writerow(headers)
for data_dict in data_list:
w.writerow([_ for _ in data_dict.values()])
def c():
"""
Returns the speed of light in meters per second
"""
return constants.c
def arrange_frequencies(length, start, stop):
"""Create an array of frequencies
:param length: number of elements
:param star: Start frequency in THz
:param stop: Stop frequency in THz
:type length: integer
:type start: float
:type stop: float
:return an array of frequencies determined by the spacing parameter
:rtype: numpy.ndarray
"""
return np.linspace(start, stop, length)
def h():
"""
Returns plank's constant in J*s
"""
return constants.h
def lin2db(value):
return 10 * log10(value)
def db2lin(value):
return 10**(value / 10)
def round2float(number, step):
step = round(step, 1)
if step >= 0.01:
number = round(number / step, 0)
number = round(number * step, 1)
else:
number = round(number, 2)
return number
wavelength2freq = constants.lambda2nu
freq2wavelength = constants.nu2lambda
def freq2wavelength(value):
""" Converts frequency units to wavelength units.
"""
return c() / value
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
snr_added = snr_added - lin2db(bw/bw_added)
snr = -lin2db(db2lin(-snr)+db2lin(-snr_added))
return snr
def deltawl2deltaf(delta_wl, wavelength):
""" deltawl2deltaf(delta_wl, wavelength):
delta_wl is BW in wavelength units
wavelength is the center wl
units for delta_wl and wavelength must be same
:param delta_wl: delta wavelength BW in same units as wavelength
:param wavelength: wavelength BW is relevant for
:type delta_wl: float or numpy.ndarray
:type wavelength: float
:return: The BW in frequency units
:rtype: float or ndarray
"""
f = wavelength2freq(wavelength)
return delta_wl * f / wavelength
def deltaf2deltawl(delta_f, frequency):
""" deltawl2deltaf(delta_f, frequency):
converts delta frequency to delta wavelength
units for delta_wl and wavelength must be same
:param delta_f: delta frequency in same units as frequency
:param frequency: frequency BW is relevant for
:type delta_f: float or numpy.ndarray
:type frequency: float
:return: The BW in wavelength units
:rtype: float or ndarray
"""
wl = freq2wavelength(frequency)
return delta_f * wl / frequency
def rrc(ffs, baud_rate, alpha):
""" rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
function.
:param ffs: A numpy array of frequencies
:param baud_rate: The Baud Rate of the System
:param alpha: The roll-off factor of the filter
:type ffs: numpy.ndarray
:type baud_rate: float
:type alpha: float
:return: hf a numpy array of the filter shape
:rtype: numpy.ndarray
"""
Ts = 1 / baud_rate
l_lim = (1 - alpha) / (2 * Ts)
r_lim = (1 + alpha) / (2 * Ts)
hf = np.zeros(np.shape(ffs))
slope_inds = np.where(
np.logical_and(np.abs(ffs) > l_lim, np.abs(ffs) < r_lim))
hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) *
(np.abs(ffs[slope_inds]) - l_lim)))
p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim))
hf[p_inds] = 1
return sqrt(hf)
def merge_amplifier_restrictions(dict1, dict2):
"""Updates contents of dicts recursively
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
>>> d2 = {'params': {'target_pch_out_db': -20}}
>>> merge_amplifier_restrictions(d1, d2)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}}
>>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}}
>>> merge_amplifier_restrictions(d1, d3)
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
"""
copy_dict1 = dict1.copy()
for key in dict2:
if key in dict1:
if isinstance(dict1[key], dict):
copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key])
else:
copy_dict1[key] = dict2[key]
return copy_dict1
def silent_remove(this_list, elem):
"""Remove matching elements from a list without raising ValueError
>>> li = [0, 1]
>>> li = silent_remove(li, 1)
>>> li
[0]
>>> li = silent_remove(li, 1)
>>> li
[0]
"""
try:
this_list.remove(elem)
except ValueError:
pass
return this_list