Files
oopt-gnpy/gnpy/core/elements.py
Jan Kundrát 89d666948e Fiber: beta2: use a default value directly
Rather than do the None-dance and document the default value within a
docstring, let's use the default value directly. This is safe because
numbers are immutable.
2019-06-06 23:55:16 +02:00

862 lines
37 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.elements
==================
This module contains standard network elements.
A network element is a Python callable. It takes a :class:`.info.SpectralInformation`
object and returns a copy with appropriate fields affected. This structure
represents spectral information that is "propogated" by this network element.
Network elements must have only a local "view" of the network and propogate
:class:`.info.SpectralInformation` using only this information. They should be independent and
self-contained.
Network elements MUST implement two attributes .uid and .name representing a
unique identifier and a printable name.
'''
from numpy import abs, arange, arcsinh, array, exp, divide, errstate
from numpy import interp, log10, mean, pi, polyfit, polyval, sum
from scipy.constants import c, h
from collections import namedtuple
from gnpy.core.node import Node
from gnpy.core.units import UNITS
from gnpy.core.utils import lin2db, db2lin, itufs, itufl, snr_sum
class Transceiver(Node):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.osnr_ase_01nm = None
self.osnr_ase = None
self.osnr_nli = None
self.snr = None
self.passive = False
self.baud_rate = None
def _calc_snr(self, spectral_info):
with errstate(divide='ignore'):
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
ratio_01nm = [lin2db(12.5e9/b_rate) for b_rate in self.baud_rate]
#set raw values to record original calculation, before update_snr()
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
for c in spectral_info.carriers]
self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
in zip(self.raw_osnr_ase, ratio_01nm)]
self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
for c in spectral_info.carriers]
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli+c.power.ase))
for c in spectral_info.carriers]
self.raw_snr_01nm = [snr - ratio for snr, ratio
in zip(self.raw_snr, ratio_01nm)]
self.osnr_ase = self.raw_osnr_ase
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
self.osnr_nli = self.raw_osnr_nli
self.snr = self.raw_snr
self.snr_01nm = self.raw_snr_01nm
def update_snr(self, *args):
"""
snr_added in 0.1nm
compute SNR penalties such as transponder Tx_osnr or Roadm add_drop_osnr
only applied in request.py / propagate on the last Trasceiver node of the path
all penalties are added in a single call because to avoid uncontrolled cumul
"""
#use raw_values so that the added snr penalties are not cumulated
snr_added = 0
for s in args:
snr_added += db2lin(-s)
snr_added = -lin2db(snr_added)
self.osnr_ase = list(map(lambda x,y:snr_sum(x,y,snr_added),
self.raw_osnr_ase, self.baud_rate))
self.snr = list(map(lambda x,y:snr_sum(x,y,snr_added),
self.raw_snr, self.baud_rate))
self.osnr_ase_01nm = list(map(lambda x:snr_sum(x,12.5e9,snr_added),
self.raw_osnr_ase_01nm))
self.snr_01nm = list(map(lambda x:snr_sum(x,12.5e9,snr_added),
self.raw_snr_01nm))
@property
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'metadata' : {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return (f'{type(self).__name__}('
f'uid={self.uid!r}, '
f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
f'osnr_ase={self.osnr_ase!r}, '
f'osnr_nli={self.osnr_nli!r}, '
f'snr={self.snr!r})')
def __str__(self):
if self.snr is None or self.osnr_ase is None:
return f'{type(self).__name__} {self.uid}'
snr = round(mean(self.snr),2)
osnr_ase = round(mean(self.osnr_ase),2)
osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
snr_01nm = round(mean(self.snr_01nm),2)
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
f' SNR total (signal bw, dB): {snr:.2f}',
f' SNR total (0.1nm, dB): {snr_01nm:.2f}'])
def __call__(self, spectral_info):
self._calc_snr(spectral_info)
return spectral_info
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr restrictions')
class Roadm(Node):
def __init__(self, *args, params, **kwargs):
super().__init__(*args, params=RoadmParams(**params), **kwargs)
self.loss = 0 #auto-design interest
self.effective_loss = None
self.effective_pch_out_db = self.params.target_pch_out_db
self.passive = True
self.restrictions = self.params.restrictions
@property
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'params' : {
'target_pch_out_db' : self.effective_pch_out_db,
'restrictions' : self.restrictions
},
'metadata' : {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
def __str__(self):
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' effective loss (dB): {self.effective_loss:.2f}',
f' pch out (dBm): {self.effective_pch_out_db!r}'])
def propagate(self, pref, *carriers):
#pin_target and loss are read from eqpt_config.json['Roadm']
#all ingress channels in xpress are set to this power level
#but add channels are not, so we define an effective loss
#in the case of add channels
self.effective_pch_out_db = min(pref.pi, self.params.target_pch_out_db)
self.effective_loss = pref.pi - self.effective_pch_out_db
carriers_power = array([c.power.signal +c.power.nli+c.power.ase for c in carriers])
carriers_att = list(map(lambda x : lin2db(x*1e3)-self.params.target_pch_out_db, carriers_power))
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default = 0)
carriers_att = list(map(lambda x: db2lin(x+exceeding_att), carriers_att))
for carrier_att, carrier in zip(carriers_att, carriers) :
pwr = carrier.power
pwr = pwr._replace( signal = pwr.signal/carrier_att,
nonlinear_interference = pwr.nli/carrier_att,
amplified_spontaneous_emission = pwr.ase/carrier_att)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p0, p_spani=self.effective_pch_out_db)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info.update(carriers=carriers, pref=pref)
FusedParams = namedtuple('FusedParams', 'loss')
class Fused(Node):
def __init__(self, *args, params=None, **kwargs):
if params is None:
# default loss value if not mentioned in loaded network json
params = {'loss':1}
super().__init__(*args, params=FusedParams(**params), **kwargs)
self.loss = self.params.loss
self.passive = True
@property
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'params' :{
'loss': self.loss
},
'metadata' : {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
def __str__(self):
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' loss (dB): {self.loss:.2f}'])
def propagate(self, *carriers):
attenuation = db2lin(self.loss)
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation,
nonlinear_interference=pwr.nli/attenuation,
amplified_spontaneous_emission=pwr.ase/attenuation)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p0, p_spani=pref.pi - self.loss)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info.update(carriers=carriers, pref=pref)
FiberParams = namedtuple('FiberParams', 'type_variety length loss_coef length_units \
att_in con_in con_out dispersion gamma')
class Fiber(Node):
def __init__(self, *args, params=None, **kwargs):
if params is None:
params = {}
if 'con_in' not in params:
# if not defined in the network json connector loss in/out
# the None value will be updated in network.py[build_network]
# with default values from eqpt_config.json[Spans]
params['con_in'] = None
params['con_out'] = None
if 'att_in' not in params:
#fixed attenuator for padding
params['att_in'] = 0
super().__init__(*args, params=FiberParams(**params), **kwargs)
self.type_variety = self.params.type_variety
self.length = self.params.length * UNITS[self.params.length_units] # in m
self.loss_coef = self.params.loss_coef * 1e-3 # lineic loss dB/m
self.lin_loss_coef = self.params.loss_coef / (20 * log10(exp(1)))
self.att_in = self.params.att_in
self.con_in = self.params.con_in
self.con_out = self.params.con_out
self.dispersion = self.params.dispersion # s/m/m
self.gamma = self.params.gamma # 1/W/m
self.pch_out_db = None
self.carriers_in = None
self.carriers_out = None
# TODO|jla: discuss factor 2 in the linear lineic attenuation
@property
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'type_variety' : self.type_variety,
'params' : {
#have to specify each because namedtupple cannot be updated :(
'type_variety' : self.type_variety,
'length' : self.length/UNITS[self.params.length_units],
'loss_coef' : self.loss_coef*1e3,
'length_units' : self.params.length_units,
'att_in' : self.att_in,
'con_in' : self.con_in,
'con_out' : self.con_out
},
'metadata' : {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, length={round(self.length*1e-3,1)!r}km, loss={round(self.loss,1)!r}dB)'
def __str__(self):
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' type_variety: {self.type_variety}',
f' length (km): {round(self.length*1e-3):.2f}',
f' pad att_in (dB): {self.att_in:.2f}',
f' total loss (dB): {self.loss:.2f}',
f' (includes conn loss (dB) in: {self.con_in:.2f} out: {self.con_out:.2f})',
f' (conn loss out includes EOL margin defined in eqpt_config.json)',
f' pch out (dBm): {self.pch_out_db!r}'])
@property
def fiber_loss(self):
"""Fiber loss in dB, not including padding attenuator"""
return self.loss_coef * self.length + self.con_in + self.con_out
@property
def loss(self):
"""total loss including padding att_in: useful for polymorphism with roadm loss"""
return self.loss_coef * self.length + self.con_in + self.con_out + self.att_in
@property
def passive(self):
return True
@property
def lin_attenuation(self):
return db2lin(self.length * self.loss_coef)
@property
def effective_length(self):
_, alpha = self.dbkm_2_lin()
leff = (1 - exp(-2 * alpha * self.length)) / (2 * alpha)
return leff
@property
def asymptotic_length(self):
_, alpha = self.dbkm_2_lin()
aleff = 1 / (2 * alpha)
return aleff
def carriers(self, loc, attr):
"""retrieve carriers information
:param loc: (in, out) of the class element
:param attr: (ase, nli, signal, total) power information
"""
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
yield None
return
power_dict = {
'nli': 'nonlinear_interference',
'ase': 'amplified_spontaneous_emission'
}
attr = power_dict.get(attr, attr)
loc_attr = 'carriers_'+loc
for c in getattr(self, loc_attr) :
if attr == 'total':
yield c.power.ase+c.power.nli+c.power.signal
else:
yield c.power._asdict().get(attr, None)
def beta2(self, ref_wavelength=1550e-9):
"""Returns beta2 from dispersion parameter.
Dispersion is entered in ps/nm/km.
Disperion can be a numpy array or a single value.
:param ref_wavelength: can be a numpy array; default: 1550nm
"""
# TODO|jla: discuss beta2 as method or attribute
D = abs(self.dispersion)
b2 = (ref_wavelength ** 2) * D / (2 * pi * c) # 10^21 scales [ps^2/km]
return b2 # s/Hz/m
def dbkm_2_lin(self):
"""calculates the linear loss coefficient"""
# linear loss coefficient in dB/km^-1
alpha_pcoef = self.loss_coef
# linear loss field amplitude coefficient in m^-1
alpha_acoef = alpha_pcoef / (2 * 10 * log10(exp(1)))
return alpha_pcoef, alpha_acoef
def _psi(self, carrier, interfering_carrier):
"""Calculates eq. 123 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__"""
if carrier.num_chan == interfering_carrier.num_chan: # SCI
psi = arcsinh(0.5 * pi**2 * self.asymptotic_length
* abs(self.beta2()) * carrier.baud_rate**2)
else: # XCI
delta_f = carrier.freq - interfering_carrier.freq
psi = arcsinh(pi**2 * self.asymptotic_length * abs(self.beta2())
* carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
psi -= arcsinh(pi**2 * self.asymptotic_length * abs(self.beta2())
* carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
return psi
def _gn_analytic(self, carrier, *carriers):
"""Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from `arXiv:1209.0394 <https://arxiv.org/abs/1209.0394>`__.
:param carrier: the signal under analysis
:param carriers: the full WDM comb
:return: carrier_nli: the amount of nonlinear interference in W on the under analysis
"""
g_nli = 0
for interfering_carrier in carriers:
psi = self._psi(carrier, interfering_carrier)
g_nli += (interfering_carrier.power.signal/interfering_carrier.baud_rate)**2 \
* (carrier.power.signal/carrier.baud_rate) * psi
g_nli *= (16 / 27) * (self.gamma * self.effective_length)**2 \
/ (2 * pi * abs(self.beta2()) * self.asymptotic_length)
carrier_nli = carrier.baud_rate * g_nli
return carrier_nli
def propagate(self, *carriers):
# apply connector_att_in on all carriers before computing gn analytics premiere partie pas bonne
attenuation = db2lin(self.con_in + self.att_in)
chan = []
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal/attenuation,
nonlinear_interference=pwr.nli/attenuation,
amplified_spontaneous_emission=pwr.ase/attenuation)
carrier = carrier._replace(power=pwr)
chan.append(carrier)
carriers = tuple(f for f in chan)
# propagate in the fiber and apply attenuation out
attenuation = db2lin(self.con_out)
for carrier in carriers:
pwr = carrier.power
carrier_nli = self._gn_analytic(carrier, *carriers)
pwr = pwr._replace(signal=pwr.signal/self.lin_attenuation/attenuation,
nonlinear_interference=(pwr.nli+carrier_nli)/self.lin_attenuation/attenuation,
amplified_spontaneous_emission=pwr.ase/self.lin_attenuation/attenuation)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
self.pch_out_db = round(pref.pi - self.loss, 2)
return pref._replace(p_span0=pref.p0, p_spani=self.pch_out_db)
def __call__(self, spectral_info):
self.carriers_in = spectral_info.carriers
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
self.carriers_out = carriers
return spectral_info.update(carriers=carriers, pref=pref)
class EdfaParams:
def __init__(self, **params):
self.update_params(params)
if params == {}:
self.type_variety = ''
self.type_def = ''
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
def update_params(self, kwargs):
for k,v in kwargs.items() :
setattr(self, k, update_params(**v)
if isinstance(v, dict) else v)
class EdfaOperational:
default_values = \
{
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
}
def __init__(self, **operational):
self.update_attr(operational)
def update_attr(self, kwargs):
clean_kwargs = {k:v for k,v in kwargs.items() if v !=''}
for k,v in self.default_values.items():
setattr(self, k, clean_kwargs.get(k,v))
def __repr__(self):
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')
class Edfa(Node):
def __init__(self, *args, params={}, operational={}, **kwargs):
#TBC is this useful? put in comment for now:
#if params is None:
# params = {}
#if operational is None:
# operational = {}
super().__init__(
*args,
params=EdfaParams(**params),
operational=EdfaOperational(**operational),
**kwargs
)
self.interpol_dgt = None # interpolated dynamic gain tilt
self.interpol_gain_ripple = None # gain ripple
self.interpol_nf_ripple = None # nf_ripple
self.channel_freq = None # SI channel frequencies
# nf, gprofile, pin and pout attributes are set by interpol_params
self.nf = None # dB edfa nf at operational.gain_target
self.gprofile = None
self.pin_db = None
self.nch = None
self.pout_db = None
self.target_pch_out_db = None
self.effective_pch_out_db = None
self.passive = False
self.att_in = None
self.carriers_in = None
self.carriers_out = None
self.effective_gain = self.operational.gain_target
self.delta_p = self.operational.delta_p #delta P with Pref (power swwep) in power mode
self.tilt_target = self.operational.tilt_target
self.out_voa = self.operational.out_voa
@property
def to_json(self):
return {'uid' : self.uid,
'type' : type(self).__name__,
'type_variety' : self.params.type_variety,
'operational' : {
'gain_target' : self.effective_gain,
'delta_p' : self.delta_p,
'tilt_target' : self.tilt_target,
'out_voa' : self.out_voa
},
'metadata' : {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return (f'{type(self).__name__}(uid={self.uid!r}, '
f'type_variety={self.params.type_variety!r}, '
f'interpol_dgt={self.interpol_dgt!r}, '
f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
f'channel_freq={self.channel_freq!r}, '
f'nf={self.nf!r}, '
f'gprofile={self.gprofile!r}, '
f'pin_db={self.pin_db!r}, '
f'pout_db={self.pout_db!r})')
def __str__(self):
if self.pin_db is None or self.pout_db is None:
return f'{type(self).__name__} {self.uid}'
nf = mean(self.nf)
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' type_variety: {self.params.type_variety}',
f' effective gain(dB): {self.effective_gain:.2f}',
f' (before att_in and before output VOA)',
f' noise figure (dB): {nf:.2f}',
f' (including att_in)',
f' pad att_in (dB): {self.att_in:.2f}',
f' Power In (dBm): {self.pin_db:.2f}',
f' Power Out (dBm): {self.pout_db:.2f}',
f' Delta_P (dB): {self.delta_p!r}',
f' target pch (dBm): {self.target_pch_out_db!r}',
f' effective pch (dBm): {self.effective_pch_out_db!r}',
f' output VOA (dB): {self.out_voa:.2f}'])
def carriers(self, loc, attr):
"""retrieve carriers information
:param loc: (in, out) of the class element
:param attr: (ase, nli, signal, total) power information
"""
if not (loc in ('in', 'out') and attr in ('nli', 'signal', 'total', 'ase')):
yield None
return
power_dict = {
'nli': 'nonlinear_interference',
'ase': 'amplified_spontaneous_emission'
}
attr = power_dict.get(attr, attr)
loc_attr = 'carriers_'+loc
for c in getattr(self, loc_attr) :
if attr == 'total':
yield c.power.ase+c.power.nli+c.power.signal
else:
yield c.power._asdict().get(attr, None)
def interpol_params(self, frequencies, pin, baud_rates, pref):
"""interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from JSON
set the edfa class __init__ None parameters :
self.channel_freq, self.nf, self.interpol_dgt and self.interpol_gain_ripple
"""
# TODO|jla: read amplifier actual frequencies from additional params in json
amplifier_freq = itufl(len(self.params.dgt), self.params.f_min, self.params.f_max) * 1e12 # Hz
self.channel_freq = frequencies
self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
self.interpol_nf_ripple =interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
self.nch = frequencies.size
self.pin_db = lin2db(sum(pin*1e3))
"""in power mode: delta_p is defined and can be used to calculate the power target
This power target is used calculate the amplifier gain"""
if self.delta_p is not None:
self.target_pch_out_db = round(self.delta_p + pref.p0, 2)
self.effective_gain = self.target_pch_out_db - pref.pi
"""check power saturation and correct effective gain & power accordingly:"""
self.effective_gain = min(
self.effective_gain,
self.params.p_max - (pref.pi + pref.neq_ch)
)
#print(self.uid, self.effective_gain, self.operational.gain_target)
self.effective_pch_out_db = round(pref.pi + self.effective_gain, 2)
"""check power saturation and correct target_gain accordingly:"""
#print(self.uid, self.effective_gain, self.pin_db, pref.pi)
self.nf = self._calc_nf()
self.gprofile = self._gain_profile(pin)
pout = (pin + self.noise_profile(baud_rates))*db2lin(self.gprofile)
self.pout_db = lin2db(sum(pout*1e3))
# ase & nli are only calculated in signal bandwidth
# pout_db is not the absolute full output power (negligible if sufficient channels)
def _nf(self, type_def, nf_model, nf_fit_coeff, gain_min, gain_flatmax, gain_target):
#if hybrid raman, use edfa_gain_flatmax attribute, else use gain_flatmax
#gain_flatmax = getattr(params, 'edfa_gain_flatmax', params.gain_flatmax)
pad = max(gain_min - gain_target, 0)
gain_target += pad
dg = max(gain_flatmax - gain_target, 0)
if type_def == 'variable_gain':
g1a = gain_target - nf_model.delta_p - dg
nf_avg = lin2db(db2lin(nf_model.nf1) + db2lin(nf_model.nf2)/db2lin(g1a))
elif type_def == 'fixed_gain':
nf_avg = nf_model.nf0
elif type_def == 'openroadm':
pin_ch = self.pin_db - lin2db(self.nch)
# model OSNR = f(Pin)
nf_avg = pin_ch - polyval(nf_model.nf_coef, pin_ch) + 58
elif type_def == 'advanced_model':
nf_avg = polyval(nf_fit_coeff, -dg)
else:
assert False, "Unrecognized amplifier type, this should have been checked by the JSON loader"
return nf_avg+pad, pad
def _calc_nf(self, avg = False):
"""nf calculation based on 2 models: self.params.nf_model.enabled from json import:
True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
False => polynomial fit based on self.params.nf_fit_coeff"""
# gain_min > gain_target TBD:
if self.params.type_def == 'dual_stage':
g1 = self.params.preamp_gain_flatmax
g2 = self.effective_gain - g1
nf1_avg, pad = self._nf( self.params.preamp_type_def,
self.params.preamp_nf_model,
self.params.preamp_nf_fit_coeff,
self.params.preamp_gain_min,
self.params.preamp_gain_flatmax,
g1)
#no padding expected for the 1stage because g1 = gain_max
nf2_avg, pad = self._nf( self.params.booster_type_def,
self.params.booster_nf_model,
self.params.booster_nf_fit_coeff,
self.params.booster_gain_min,
self.params.booster_gain_flatmax,
g2)
nf_avg = lin2db(db2lin(nf1_avg) + db2lin(nf2_avg-g1))
#no padding expected for the 1stage because g1 = gain_max
pad = 0
else:
nf_avg, pad = self._nf( self.params.type_def,
self.params.nf_model,
self.params.nf_fit_coeff,
self.params.gain_min,
self.params.gain_flatmax,
self.effective_gain)
self.att_in = pad # not used to attenuate carriers, only used in _repr_ and _str_
if avg:
return nf_avg
else:
return self.interpol_nf_ripple + nf_avg # input VOA = 1 for 1 NF degradation
def noise_profile(self, df):
"""noise_profile(bw) computes amplifier ase (W) in signal bw (Hz)
noise is calculated at amplifier input
:bw: signal bandwidth = baud rate in Hz
:type bw: float
:return: the asepower in W in the signal bandwidth bw for 96 channels
:return type: numpy array of float
ASE POWER USING PER CHANNEL GAIN PROFILE
INPUTS:
NF_dB - Noise figure in dB, vector of length number of channels or
spectral slices
G_dB - Actual gain calculated for the EDFA, vector of length number of
channels or spectral slices
ffs - Center frequency grid of the channels or spectral slices in
THz, vector of length number of channels or spectral slices
dF - width of each channel or spectral slice in THz,
vector of length number of channels or spectral slices
OUTPUT:
ase_dBm - ase in dBm per channel or spectral slice
NOTE: the output is the total ASE in the channel or spectral slice. For
50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
in 0.1nm, subtract 6dB.
ONSR is usually quoted as channel power divided by
the ASE power in 0.1nm RBW, regardless of the width of the actual
channel. This is a historical convention from the days when optical
signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
resolution of the OSAs that were used to measure spectral power which
were set to 0.1nm resolution for convenience. Moving forward into
flexible grid and high baud rate signals, it may be convenient to begin
quoting power spectral density in the same BW for both signal and ASE,
e.g. 12.5GHz."""
ase = h * df * self.channel_freq * db2lin(self.nf) # W
return ase # in W at amplifier input
def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
"""
Pin : input power / channel in W
:param gain_ripple: design flat gain
:param dgt: design gain tilt
:param Pin: total input power in W
:param gp: Average gain setpoint in dB units
:param gtp: gain tilt setting
:type gain_ripple: numpy.ndarray
:type dgt: numpy.ndarray
:type Pin: numpy.ndarray
:type gp: float
:type gtp: float
:return: gain profile in dBm
:rtype: numpy.ndarray
AMPLIFICATION USING INPUT PROFILE
INPUTS:
gain_ripple - vector of length number of channels or spectral slices
DGT - vector of length number of channels or spectral slices
Pin - input powers vector of length number of channels or
spectral slices
Gp - provisioned gain length 1
GTp - provisioned tilt length 1
OUTPUT:
amp gain per channel or spectral slice
NOTE: there is no checking done for violations of the total output
power capability of the amp.
EDIT OF PREVIOUS NOTE: power violation now added in interpol_params
Ported from Matlab version written by David Boerges at Ciena.
Based on:
R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
gain
tilt technique", Journal of Lightwave Technology, Vol. 18, Iss. 3,
Pp. 343-347, 2000.
"""
# TODO|jla: check what param should be used (currently length(dgt))
nb_channel = arange(len(self.interpol_dgt))
# TODO|jla: find a way to use these or lose them. Primarily we should have
# a way to determine if exceeding the gain or output power of the amp
tot_in_power_db = self.pin_db # Pin in W
# linear fit to get the
p = polyfit(nb_channel, self.interpol_dgt, 1)
dgt_slope = p[0]
# Calculate the target slope - currently assumes equal spaced channels
# TODO|jla: support arbitrary channel spacing
targ_slope = self.tilt_target / (len(nb_channel) - 1)
# first estimate of DGT scaling
if abs(dgt_slope) > 0.001: # check for zero value due to flat dgt
dgts1 = targ_slope / dgt_slope
else:
dgts1 = 0
# when simple_opt is true, make 2 attempts to compute gain and
# the internal voa value. This is currently here to provide direct
# comparison with original Matlab code. Will be removed.
# TODO|jla: replace with loop
if not simple_opt:
return
# first estimate of Er gain & VOA loss
g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
+ array(self.interpol_dgt) * dgts1
voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
# second estimate of amp ch gain using the channel input profile
g2nd = g1st - voa
pout_db = lin2db(sum(pin*1e3*db2lin(g2nd)))
dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
# center estimate of amp ch gain
xcent = dgts2
gcent = g1st - voa + array(self.interpol_dgt) * xcent
pout_db = lin2db(sum(pin*1e3*db2lin(gcent)))
gavg_cent = pout_db - tot_in_power_db
# Lower estimate of amp ch gain
deltax = max(g1st) - min(g1st)
# if no ripple deltax = 0 and xlow = xcent: div 0
# TODO|jla: add check for flat gain response
if abs(deltax) <= 0.05: # not enough ripple to consider calculation
return g1st - voa
xlow = dgts2 - deltax
glow = g1st - voa + array(self.interpol_dgt) * xlow
pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
gavg_low = pout_db - tot_in_power_db
# upper gain estimate
xhigh = dgts2 + deltax
ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
gavg_high = pout_db - tot_in_power_db
# compute slope
slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
if abs(self.effective_gain - gavg_cent) <= err_tolerance:
dgts3 = xcent
elif self.effective_gain < gavg_cent:
dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
else:
dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
return g1st - voa + array(self.interpol_dgt) * dgts3
def propagate(self, pref, *carriers):
"""add ASE noise to the propagating carriers of :class:`.info.SpectralInformation`"""
pin = array([c.power.signal+c.power.nli+c.power.ase for c in carriers]) # pin in W
freq = array([c.frequency for c in carriers])
brate = array([c.baud_rate for c in carriers])
# interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
self.interpol_params(freq, pin, brate, pref)
gains = db2lin(self.gprofile)
carrier_ases = self.noise_profile(brate)
att = db2lin(self.out_voa)
for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal*gain/att,
nonlinear_interference=pwr.nli*gain/att,
amplified_spontaneous_emission=(pwr.ase+carrier_ase)*gain/att)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p0,
p_spani=pref.pi + self.effective_gain - self.out_voa)
def __call__(self, spectral_info):
self.carriers_in = spectral_info.carriers
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
self.carriers_out = carriers
return spectral_info.update(carriers=carriers, pref=pref)