Files
oopt-gnpy/tests/test_propagation.py
Esther Le Rouzic d94dc51d88 Restrictions on auto-adding amplifiers into ROADMs
This feature is intended to support designs such as OpenROADM where the
line degree integrates a specific preamp/booster pair. In that case, it
does not make sense for our autodesign to "pick an amplifier". The
restrictions can be activated by:

- Listing them in `eqpt_config.json`, so that they are effective for all
ROADM instances.
- On a per-ROADM basis within the Excel sheet or the JSON definitions.

Restrictions apply to an entire ROADM as a whole, not to the individual
degrees.

If a per-degree exception is needed, the amplifier of this degree can be
defined in the equipment sheet or in the network definition.

If no booster amplifier should be placed on a degree, use the `Fused`
node in place of an amplifier.

Signed-off-by: Esther Le Rouzic <esther.lerouzic@orange.com>
Co-authored-by: Jan Kundrát <jan.kundrat@telecominfraproject.com>
2019-06-06 11:58:45 +02:00

100 lines
4.0 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Author: Jean-Luc Auge
# @Date: 2018-02-02 14:06:55
from gnpy.core.elements import Edfa
import numpy as np
from json import load
import pytest
from gnpy.core.elements import Transceiver, Fiber, Edfa
from gnpy.core.utils import lin2db, db2lin
from gnpy.core.info import create_input_spectral_information, SpectralInformation, Channel, Power
from gnpy.core.equipment import load_equipment
from gnpy.core.network import build_network, load_network
from pathlib import Path
from networkx import dijkstra_path
from numpy import mean
#network_file_name = 'tests/test_network.json'
network_file_name = Path(__file__).parent.parent / 'tests/LinkforTest.json'
#TODO: note that this json entries has a weird topology since EDfa1 has a possible branch on a receiver B
# this might not pass future tests/ code updates
#network_file_name = Path(__file__).parent.parent / 'examples/edfa_example_network.json'
eqpt_library_name = Path(__file__).parent.parent / 'tests/data/eqpt_config.json'
@pytest.fixture(params=[(96, 0.05e12), (60, 0.075e12), (45, 0.1e12), (2, 0.1e12)],
ids=['50GHz spacing', '75GHz spacing', '100GHz spacing', '2 channels'])
# TODO in elements.py code: pytests doesn't pass with 1 channel: interpolate fail
def nch_and_spacing(request):
"""parametrize channel count vs channel spacing (Hz)"""
yield request.param
def propagation(input_power, con_in, con_out,dest):
equipment = load_equipment(eqpt_library_name)
network = load_network(network_file_name,equipment)
build_network(network, equipment, 0, 20)
# parametrize the network elements with the con losses and adapt gain
# (assumes all spans are identical)
for e in network.nodes():
if isinstance(e, Fiber):
loss = e.loss_coef * e.length
e.con_in = con_in
e.con_out = con_out
if isinstance(e, Edfa):
e.operational.gain_target = loss + con_in + con_out
transceivers = {n.uid: n for n in network.nodes() if isinstance(n, Transceiver)}
p = input_power
p = db2lin(p) * 1e-3
spacing = 50e9 # THz
si = create_input_spectral_information(191.3e12, 191.3e12+79*spacing, 0.15, 32e9, p, spacing)
source = next(transceivers[uid] for uid in transceivers if uid == 'trx A')
sink = next(transceivers[uid] for uid in transceivers if uid == dest)
path = dijkstra_path(network, source, sink)
for el in path:
si = el(si)
print(el) # remove this line when sweeping across several powers
edfa_sample = next(el for el in path if isinstance(el, Edfa))
nf = mean(edfa_sample.nf)
print(f'pw: {input_power} conn in: {con_in} con out: {con_out}',
f'OSNR@0.1nm: {round(mean(sink.osnr_ase_01nm),2)}',
f'SNR@bandwitdth: {round(mean(sink.snr),2)}')
return sink , nf
test = {'a':(-1,1,0),'b':(-1,1,1),'c':(0,1,0),'d':(1,1,1)}
expected = {'a':(-2,0,0),'b':(-2,0,1),'c':(-1,0,0),'d':(0,0,1)}
@pytest.mark.parametrize("dest",['trx B','trx F'])
@pytest.mark.parametrize("osnr_test", ['a','b','c','d'])
def test_snr(osnr_test, dest):
pw = test[osnr_test][0]
conn_in = test[osnr_test][1]
conn_out =test[osnr_test][2]
sink,nf = propagation(pw,conn_in,conn_out,dest)
osnr = round(mean(sink.osnr_ase),3)
nli = 1.0/db2lin(round(mean(sink.snr),3)) - 1.0/db2lin(osnr)
pw = expected[osnr_test][0]
conn_in = expected[osnr_test][1]
conn_out = expected[osnr_test][2]
sink,exp_nf = propagation(pw,conn_in,conn_out,dest)
expected_osnr = round(mean(sink.osnr_ase),3)
expected_nli = 1.0/db2lin(round(mean(sink.snr),3)) - 1.0/db2lin(expected_osnr)
# compare OSNR taking into account nf change of amps
osnr_diff = abs(osnr - expected_osnr + nf - exp_nf)
nli_diff = abs((nli-expected_nli)/nli)
assert osnr_diff <0.01 and nli_diff<0.01
if __name__ == '__main__':
from logging import getLogger, basicConfig, INFO
logger = getLogger(__name__)
basicConfig(level=INFO)
for a in test :
test_snr(a,'trx F')
print('\n')