Files
oopt-gnpy/gnpy/core/science_utils.py

712 lines
33 KiB
Python

import numpy as np
from operator import attrgetter
from collections import namedtuple
import scipy.constants as ph
from scipy.integrate import solve_bvp
from scipy.integrate import cumtrapz
from scipy.interpolate import interp1d
from scipy.optimize import OptimizeResult
from gnpy.core.utils import db2lin, load_json
def load_sim_params(path_sim_params):
sim_params = load_json(path_sim_params)
return SimParams(params=sim_params)
def configure_network(network, sim_params):
from gnpy.core.elements import RamanFiber
for node in network.nodes:
if isinstance(node, RamanFiber):
node.sim_params = sim_params
class RamanParams():
def __init__(self, params=None):
if params:
self.flag_raman = params['flag_raman']
self.space_resolution = params['space_resolution']
self.tolerance = params['tolerance']
self.verbose = params['verbose']
class NLIParams():
def __init__(self, params=None):
if params:
self.nli_method_name = params['nli_method_name']
self.wdm_grid_size = params['wdm_grid_size']
self.dispersion_tolerance = params['dispersion_tolerance']
self.phase_shift_tollerance = params['phase_shift_tollerance']
self.f_cut_resolution = None
self.f_pump_resolution = None
self.verbose = params['verbose']
class SimParams():
def __init__(self, params=None):
if params:
self.list_of_channels_under_test = params['list_of_channels_under_test']
self.raman_params = RamanParams(params=params['raman_parameters'])
self.nli_params = NLIParams(params=params['nli_parameters'])
fib_params = namedtuple('FiberParams', 'loss_coef length beta2 beta3 f_ref_beta gamma raman_efficiency temperature')
pump = namedtuple('RamanPump', 'power frequency propagation_direction')
def propagate_raman_fiber(fiber, *carriers):
sim_params = fiber.sim_params
raman_params = fiber.sim_params.raman_params
nli_params = fiber.sim_params.nli_params
# apply input attenuation to carriers
attenuation_in = db2lin(fiber.con_in + fiber.att_in)
chan = []
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / attenuation_in,
nonlinear_interference=pwr.nli / attenuation_in,
amplified_spontaneous_emission=pwr.ase / attenuation_in)
carrier = carrier._replace(power=pwr)
chan.append(carrier)
carriers = tuple(f for f in chan)
raman_efficiency = fiber.params.raman_efficiency
if not raman_params.flag_raman:
raman_efficiency['cr'] = np.array(raman_efficiency['cr']) * 0
fiber_params = fib_params(loss_coef=2*fiber.dbkm_2_lin()[1], length=fiber.length, gamma=fiber.gamma,
beta2=fiber.beta2(), beta3=fiber.beta3 if hasattr(fiber,'beta3') else 0,
f_ref_beta=fiber.f_ref_beta if hasattr(fiber,'f_ref_beta') else 0,
raman_efficiency=raman_efficiency,
temperature=fiber.operational['temperature'])
# evaluate fiber attenuation involving also SRS if required by sim_params
if 'raman_pumps' in fiber.operational:
raman_pumps = tuple(pump(p['power'], p['frequency'], p['propagation_direction'])
for p in fiber.operational['raman_pumps'])
else:
raman_pumps = None
raman_solver = RamanSolver(raman_params=raman_params, fiber_params=fiber_params)
stimulated_raman_scattering = raman_solver.stimulated_raman_scattering(carriers=carriers,
raman_pumps=raman_pumps)
fiber_attenuation = (stimulated_raman_scattering.rho[:, -1])**-2
if not raman_params.flag_raman:
fiber_attenuation = tuple(fiber.lin_attenuation for _ in carriers)
# evaluate Raman ASE noise if required by sim_params and if raman pumps are present
if raman_params.flag_raman and raman_pumps:
raman_ase = raman_solver.spontaneous_raman_scattering.power[:, -1]
else:
raman_ase = tuple(0 for _ in carriers)
# evaluate nli and propagate in fiber
attenuation_out = db2lin(fiber.con_out)
nli_solver = NliSolver(nli_params=nli_params, fiber_params=fiber_params)
nli_solver.stimulated_raman_scattering = stimulated_raman_scattering
for carrier, attenuation, rmn_ase in zip(carriers, fiber_attenuation, raman_ase):
resolution_param = frequency_resolution(carrier, carriers, sim_params, fiber)
f_cut_resolution, f_pump_resolution, _, _ = resolution_param
nli_params.f_cut_resolution = f_cut_resolution
nli_params.f_pump_resolution = f_pump_resolution
pwr = carrier.power
if carrier.channel_number in sim_params.list_of_channels_under_test:
carrier_nli = nli_solver.compute_nli(carrier, *carriers)
else:
carrier_nli = np.nan
pwr = pwr._replace(signal=pwr.signal/attenuation/attenuation_out,
nonlinear_interference=(pwr.nli+carrier_nli)/attenuation/attenuation_out,
amplified_spontaneous_emission=((pwr.ase/attenuation)+rmn_ase)/attenuation_out)
yield carrier._replace(power=pwr)
def frequency_resolution(carrier, carriers, sim_params, fiber):
grid_size = sim_params.nli_params.wdm_grid_size
alpha_ef = fiber.dbkm_2_lin()[1]
delta_z = sim_params.raman_params.space_resolution
beta2 = fiber.beta2()
k_tol = sim_params.nli_params.dispersion_tolerance
phi_tol = sim_params.nli_params.phase_shift_tollerance
f_pump_resolution, method_f_pump, res_dict_pump = \
_get_freq_res_k_phi(0, grid_size, alpha_ef, delta_z, beta2, k_tol, phi_tol)
f_cut_resolution = {}
method_f_cut = {}
res_dict_cut = {}
for cut_carrier in carriers:
delta_number = cut_carrier.channel_number - carrier.channel_number
delta_count = abs(delta_number)
f_res, method, res_dict = \
_get_freq_res_k_phi(delta_count, grid_size, alpha_ef, delta_z, beta2, k_tol, phi_tol)
f_cut_resolution[f'delta_{delta_number}'] = f_res
method_f_cut[delta_number] = method
res_dict_cut[delta_number] = res_dict
return [f_cut_resolution, f_pump_resolution, (method_f_cut, method_f_pump), (res_dict_cut, res_dict_pump)]
def _get_freq_res_k_phi(delta_count, grid_size, alpha_ef, delta_z, beta2, k_tol, phi_tol):
res_phi = _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol)
res_k = _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha_ef, beta2, k_tol)
res_dict = {'res_phi': res_phi, 'res_k': res_k}
method = min(res_dict, key=res_dict.get)
return res_dict[method], method, res_dict
def _get_freq_res_dispersion_attenuation(delta_count, grid_size, alpha_ef, beta2, k_tol):
return k_tol * 2 * abs(alpha_ef) / abs(beta2) / (1 + delta_count) / (4*np.pi**2 * grid_size)
def _get_freq_res_phase_rotation(delta_count, grid_size, delta_z, beta2, phi_tol):
return phi_tol / abs(beta2) / (1 + delta_count) / delta_z / (4*np.pi**2 * grid_size)
def raised_cosine_comb(f, *carriers):
""" Returns an array storing the PSD of a WDM comb of raised cosine shaped
channels at the input frequencies defined in array f
:param f: numpy array of frequencies in Hz
:param carriers: namedtuple describing the WDM comb
:return: PSD of the WDM comb evaluated over f
"""
psd = np.zeros(np.shape(f))
for carrier in carriers:
f_nch = carrier.frequency
g_ch = carrier.power.signal / carrier.baud_rate
ts = 1 / carrier.baud_rate
passband = (1 - carrier.roll_off) / (2 / carrier.baud_rate)
stopband = (1 + carrier.roll_off) / (2 / carrier.baud_rate)
ff = np.abs(f - f_nch)
tf = ff - passband
if carrier.roll_off == 0:
psd = np.where(tf <= 0, g_ch, 0.) + psd
else:
psd = g_ch * (np.where(tf <= 0, 1., 0.) + 1 / 2 * (1 + np.cos(np.pi * ts / carrier.roll_off * tf)) *
np.where(tf > 0, 1., 0.) * np.where(np.abs(ff) <= stopband, 1., 0.)) + psd
return psd
class RamanSolver:
def __init__(self, raman_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
:param length: fiber length in m.
:param alphap: fiber power attenuation coefficient vs frequency in 1/m. numpy array
:param freq_alpha: frequency axis of alphap in Hz. numpy array
:param cr_raman: Raman efficiency vs frequency offset in 1/W/m. numpy array
:param freq_cr: reference frequency offset axis for cr_raman. numpy array
:param raman_params: namedtuple containing the solver parameters (optional).
"""
self.fiber_params = fiber_params
self.raman_params = raman_params
self._carriers = None
self._stimulated_raman_scattering = None
self._spontaneous_raman_scattering = None
@property
def fiber_params(self):
return self._fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self._stimulated_raman_scattering = None
self._fiber_params = fiber_params
@property
def carriers(self):
return self._carriers
@carriers.setter
def carriers(self, carriers):
"""
:param carriers: tuple of namedtuples containing information about carriers
:return:
"""
self._carriers = carriers
self._stimulated_raman_scattering = None
@property
def raman_pumps(self):
return self._raman_pumps
@raman_pumps.setter
def raman_pumps(self, raman_pumps):
self._raman_pumps = raman_pumps
self._stimulated_raman_scattering = None
@property
def raman_params(self):
return self._raman_params
@raman_params.setter
def raman_params(self, raman_params):
"""
:param raman_params: namedtuple containing the solver parameters (optional).
:return:
"""
self._raman_params = raman_params
self._stimulated_raman_scattering = None
self._spontaneous_raman_scattering = None
@property
def spontaneous_raman_scattering(self):
if self._spontaneous_raman_scattering is None:
# SET STUFF
loss_coef = self.fiber_params.loss_coef
raman_efficiency = self.fiber_params.raman_efficiency
temperature = self.fiber_params.temperature
carriers = self.carriers
raman_pumps = self.raman_pumps
verbose = self.raman_params.verbose
if verbose:
print('Start computing fiber Spontaneous Raman Scattering')
power_spectrum, freq_array, prop_direct, bn_array = self._compute_power_spectrum(carriers, raman_pumps)
if not hasattr(loss_coef, 'alpha_power'):
alphap_fiber = loss_coef * np.ones(freq_array.shape)
else:
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
alphap_fiber = interp_alphap(freq_array)
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
cr = interp_cr(freq_diff)
# z propagation axis
z_array = self._stimulated_raman_scattering.z
ase_bc = np.zeros(freq_array.shape)
# calculate ase power
spontaneous_raman_scattering = self._int_spontaneous_raman(z_array, self._stimulated_raman_scattering.power,
alphap_fiber, freq_array, cr, freq_diff, ase_bc,
bn_array, temperature)
setattr(spontaneous_raman_scattering, 'frequency', freq_array)
setattr(spontaneous_raman_scattering, 'z', z_array)
setattr(spontaneous_raman_scattering, 'power', spontaneous_raman_scattering.x)
delattr(spontaneous_raman_scattering, 'x')
if verbose:
print(spontaneous_raman_scattering.message)
self._spontaneous_raman_scattering = spontaneous_raman_scattering
return self._spontaneous_raman_scattering
@staticmethod
def _compute_power_spectrum(carriers, raman_pumps=None):
"""
Rearrangement of spectral and Raman pump information to make them compatible with Raman solver
:param carriers: a tuple of namedtuples describing the transmitted channels
:param raman_pumps: a namedtuple describing the Raman pumps
:return:
"""
# Signal power spectrum
pow_array = np.array([])
f_array = np.array([])
noise_bandwidth_array = np.array([])
for carrier in sorted(carriers, key=attrgetter('frequency')):
f_array = np.append(f_array, carrier.frequency)
pow_array = np.append(pow_array, carrier.power.signal)
ref_bw = carrier.baud_rate
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
propagation_direction = np.ones(len(f_array))
# Raman pump power spectrum
if raman_pumps:
for pump in raman_pumps:
pow_array = np.append(pow_array, pump.power)
f_array = np.append(f_array, pump.frequency)
direction = +1 if pump.propagation_direction.lower() == 'coprop' else -1
propagation_direction = np.append(propagation_direction, direction)
noise_bandwidth_array = np.append(noise_bandwidth_array, ref_bw)
# Final sorting
ind = np.argsort(f_array)
f_array = f_array[ind]
pow_array = pow_array[ind]
propagation_direction = propagation_direction[ind]
return pow_array, f_array, propagation_direction, noise_bandwidth_array
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array, cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
spontaneous_raman_scattering = OptimizeResult()
dx = self.raman_params.space_resolution
h = ph.value('Planck constant')
kb = ph.value('Boltzmann constant')
power_ase = np.nan * np.ones(raman_matrix.shape)
int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)
for f_ind, f_ase in enumerate(freq_array):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = f_ase / freq_array[:f_ind]
eta = 1/(np.exp((h*freq_diff[f_ind, f_ind+1:])/(kb*temperature)) - 1)
int_fiber_loss = -alphap_fiber[f_ind] * z_array
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(), axis=0)
int_raman_gain = np.sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
new_ase = np.sum((cr_raman[f_ind+1:] * (1 + eta) * raman_matrix[f_ind+1:, :].transpose()).transpose() * h * f_ase * bn_array[f_ind], axis=0)
bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
ase_evolution = np.exp(int_gain_loss) * cumtrapz(new_ase*np.exp(-int_gain_loss), z_array, dx=dx, initial=0)
power_ase[f_ind, :] = bc_evolution + ase_evolution
spontaneous_raman_scattering.x = 2 * power_ase
spontaneous_raman_scattering.success = True
spontaneous_raman_scattering.message = "Spontaneous Raman Scattering evaluated successfully"
return spontaneous_raman_scattering
def stimulated_raman_scattering(self, carriers, raman_pumps=None):
""" Returns stimulated Raman scattering solution including
fiber gain/loss profile.
:return: self._stimulated_raman_scattering: the SRS problem solution.
scipy.interpolate.PPoly instance
"""
if self._stimulated_raman_scattering is None:
# fiber parameters
fiber_length = self.fiber_params.length
loss_coef = self.fiber_params.loss_coef
raman_efficiency = self.fiber_params.raman_efficiency
# raman solver parameters
z_resolution = self.raman_params.space_resolution
tolerance = self.raman_params.tolerance
verbose = self.raman_params.verbose
if verbose:
print('Start computing fiber Stimulated Raman Scattering')
power_spectrum, freq_array, prop_direct, _ = self._compute_power_spectrum(carriers, raman_pumps)
if not hasattr(loss_coef, 'alpha_power'):
alphap_fiber = loss_coef * np.ones(freq_array.shape)
else:
interp_alphap = interp1d(loss_coef['frequency'], loss_coef['alpha_power'])
alphap_fiber = interp_alphap(freq_array)
freq_diff = abs(freq_array - np.reshape(freq_array, (len(freq_array), 1)))
interp_cr = interp1d(raman_efficiency['frequency_offset'], raman_efficiency['cr'])
cr = interp_cr(freq_diff)
# z propagation axis
z = np.arange(0, fiber_length+1, z_resolution)
ode_function = lambda z, p: self._ode_stimulated_raman(z, p, alphap_fiber, freq_array, cr, prop_direct)
boundary_residual = lambda ya, yb: self._residuals_stimulated_raman(ya, yb, power_spectrum, prop_direct)
initial_guess_conditions = self._initial_guess_stimulated_raman(z, power_spectrum, alphap_fiber, prop_direct)
# ODE SOLVER
stimulated_raman_scattering = solve_bvp(ode_function, boundary_residual, z, initial_guess_conditions, tol=tolerance, verbose=verbose)
rho = (stimulated_raman_scattering.y.transpose() / power_spectrum).transpose()
rho = np.sqrt(rho) # From power attenuation to field attenuation
setattr(stimulated_raman_scattering, 'frequency', freq_array)
setattr(stimulated_raman_scattering, 'z', stimulated_raman_scattering.x)
setattr(stimulated_raman_scattering, 'rho', rho)
setattr(stimulated_raman_scattering, 'power', stimulated_raman_scattering.y)
delattr(stimulated_raman_scattering, 'x')
delattr(stimulated_raman_scattering, 'y')
self.carriers = carriers
self.raman_pumps = raman_pumps
self._stimulated_raman_scattering = stimulated_raman_scattering
return self._stimulated_raman_scattering
def _residuals_stimulated_raman(self, ya, yb, power_spectrum, prop_direct):
computed_boundary_value = np.zeros(ya.size)
for index, direction in enumerate(prop_direct):
if direction == +1:
computed_boundary_value[index] = ya[index]
else:
computed_boundary_value[index] = yb[index]
return power_spectrum - computed_boundary_value
def _initial_guess_stimulated_raman(self, z, power_spectrum, alphap_fiber, prop_direct):
""" Computes the initial guess knowing the boundary conditions
:param z: patial axis [m]. numpy array
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array
:return: power_guess: guess on the initial conditions [W]. The first ndarray index identifies the frequency slice,
the second ndarray index identifies the step in z. ndarray
"""
power_guess = np.empty((power_spectrum.size, z.size))
for f_index, power_slice in enumerate(power_spectrum):
if prop_direct[f_index] == +1:
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z) * power_slice
else:
power_guess[f_index, :] = np.exp(-alphap_fiber[f_index] * z[::-1]) * power_slice
return power_guess
def _ode_stimulated_raman(self, z, power_spectrum, alphap_fiber, freq_array, cr_raman_matrix, prop_direct):
""" Aim of ode_raman is to implement the set of ordinary differential equations (ODEs) describing the Raman effect.
:param z: spatial axis (unused).
:param power_spectrum: power in each frequency slice [W]. Frequency axis is defined by freq_array. numpy array. Size n
:param alphap_fiber: frequency dependent fiber attenuation of signal power [1/m]. Frequency defined by freq_array. numpy array. Size n
:param freq_array: reference frequency axis [Hz]. numpy array. Size n
:param cr_raman: Cr(f) Raman gain efficiency variation in frequency [1/W/m]. Frequency defined by freq_array. numpy ndarray. Size nxn
:param prop_direct: indicates the propagation direction of each power slice in power_spectrum:
+1 for forward propagation and -1 for backward propagation. Frequency defined by freq_array. numpy array. Size n
:return: dP/dz: the power variation in dz [W/m]. numpy array. Size n
"""
dpdz = np.nan * np.ones(power_spectrum.shape)
for f_ind, power in enumerate(power_spectrum):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = freq_array[f_ind] / freq_array[:f_ind]
for z_ind, power_sample in enumerate(power):
raman_gain = np.sum(cr_raman[f_ind+1:] * power_spectrum[f_ind+1:, z_ind])
raman_loss = np.sum(vibrational_loss * cr_raman[:f_ind] * power_spectrum[:f_ind, z_ind])
dpdz_element = prop_direct[f_ind] * (-alphap_fiber[f_ind] + raman_gain - raman_loss) * power_sample
dpdz[f_ind][z_ind] = dpdz_element
return np.vstack(dpdz)
class NliSolver:
""" This class implements the NLI models.
Model and method can be specified in `self.nli_params.method`.
List of implemented methods:
'gn_model_analytic': brute force triple integral solution
'ggn_spectrally_separated_xpm_spm': XPM plus SPM
"""
def __init__(self, nli_params=None, fiber_params=None):
""" Initialize the fiber object with its physical parameters
"""
self.fiber_params = fiber_params
self.nli_params = nli_params
self.stimulated_raman_scattering = None
@property
def fiber_params(self):
return self._fiber_params
@fiber_params.setter
def fiber_params(self, fiber_params):
self._fiber_params = fiber_params
@property
def stimulated_raman_scattering(self):
return self._stimulated_raman_scattering
@stimulated_raman_scattering.setter
def stimulated_raman_scattering(self, stimulated_raman_scattering):
self._stimulated_raman_scattering = stimulated_raman_scattering
@property
def nli_params(self):
return self._nli_params
@nli_params.setter
def nli_params(self, nli_params):
"""
:param model_params: namedtuple containing the parameters used to compute the NLI.
"""
self._nli_params = nli_params
def alpha0(self, f_eval=193.5e12):
if not hasattr(self.fiber_params.loss_coef, 'alpha_power'):
alpha0 = self.fiber_params.loss_coef
else:
alpha_interp = interp1d(self.fiber_params.loss_coef['frequency'],
self.fiber_params.loss_coef['alpha_power'])
alpha0 = alpha_interp(f_eval)
return alpha0
def compute_nli(self, carrier, *carriers):
""" Compute NLI power generated by the WDM comb `*carriers` on the channel under test `carrier`
at the end of the fiber span.
"""
if 'gn_model_analytic' == self.nli_params.nli_method_name.lower():
carrier_nli = self._gn_analytic(carrier, *carriers)
elif 'ggn_spectrally_separated' in self.nli_params.nli_method_name.lower():
eta_matrix = self._compute_eta_matrix(carrier, *carriers)
carrier_nli = self._carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers)
else:
raise ValueError(f'Method {self.nli_params.method_nli} not implemented.')
return carrier_nli
@staticmethod
def _carrier_nli_from_eta_matrix(eta_matrix, carrier, *carriers):
carrier_nli = 0
for pump_carrier_1 in carriers:
for pump_carrier_2 in carriers:
carrier_nli += eta_matrix[pump_carrier_1.channel_number-1, pump_carrier_2.channel_number-1] * \
pump_carrier_1.power.signal * pump_carrier_2.power.signal
carrier_nli *= carrier.power.signal
return carrier_nli
def _compute_eta_matrix(self, carrier_cut, *carriers):
cut_index = carrier_cut.channel_number - 1
# Matrix initialization
matrix_size = max(carriers, key=lambda x: getattr(x, 'channel_number')).channel_number
eta_matrix = np.zeros(shape=(matrix_size, matrix_size))
# SPM
if self.nli_params.verbose:
print(f'Start computing SPM on channel #{carrier_cut.channel_number}')
# SPM GGN
if 'ggn' in self.nli_params.nli_method_name.lower():
partial_nli = self._generalized_spectrally_separated_spm(carrier_cut)
# SPM GN
elif 'gn' in self.nli_params.nli_method_name.lower():
partial_nli = self._gn_analytic(carrier_cut, *[carrier_cut])
eta_matrix[cut_index, cut_index] = partial_nli / (carrier_cut.power.signal**3)
# XPM
for pump_carrier in carriers:
pump_index = pump_carrier.channel_number - 1
if not (cut_index == pump_index):
if self.nli_params.verbose:
print(f'Start computing XPM on channel #{carrier_cut.channel_number} '
f'from channel #{pump_carrier.channel_number}')
# XPM GGN
if 'ggn' in self.nli_params.nli_method_name.lower():
partial_nli = self._generalized_spectrally_separated_xpm(carrier_cut, pump_carrier)
# XPM GGN
elif 'gn' in self.nli_params.nli_method_name.lower():
partial_nli = self._gn_analytic(carrier_cut, *[pump_carrier])
eta_matrix[pump_index, pump_index] = partial_nli /\
(carrier_cut.power.signal * pump_carrier.power.signal**2)
return eta_matrix
# Methods for computing GN-model
def _gn_analytic(self, carrier, *carriers):
""" Computes the nonlinear interference power on a single carrier.
The method uses eq. 120 from arXiv:1209.0394.
:param carrier: the signal under analysis
:param carriers: the full WDM comb
:return: carrier_nli: the amount of nonlinear interference in W on the carrier under analysis
"""
alpha = self.alpha0() / 2
beta2 = self.fiber_params.beta2
gamma = self.fiber_params.gamma
length = self.fiber_params.length
effective_length = (1 - np.exp(-2 * alpha * length)) / (2 * alpha)
asymptotic_length = 1 / (2 * alpha)
g_nli = 0
for interfering_carrier in carriers:
g_interfearing = interfering_carrier.power.signal / interfering_carrier.baud_rate
g_signal = carrier.power.signal / carrier.baud_rate
g_nli += g_interfearing**2 * g_signal * self._psi(carrier, interfering_carrier)
g_nli *= (16.0 / 27.0) * (gamma * effective_length)**2 /\
(2 * np.pi * abs(beta2) * asymptotic_length)
carrier_nli = carrier.baud_rate * g_nli
return carrier_nli
def _psi(self, carrier, interfering_carrier):
""" Calculates eq. 123 from arXiv:1209.0394.
"""
alpha = self.alpha0() / 2
beta2 = self.fiber_params.beta2
asymptotic_length = 1 / (2 * alpha)
if carrier.channel_number == interfering_carrier.channel_number: # SPM
psi = np.arcsinh(0.5 * np.pi**2 * asymptotic_length * abs(beta2) * carrier.baud_rate**2)
else: # XPM
delta_f = carrier.frequency - interfering_carrier.frequency
psi = np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
psi -= np.arcsinh(np.pi**2 * asymptotic_length * abs(beta2) *
carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
return psi
# Methods for computing the GGN-model
def _generalized_spectrally_separated_spm(self, carrier):
f_cut_resolution = self.nli_params.f_cut_resolution['delta_0']
f_eval = carrier.frequency
g_cut = (carrier.power.signal / carrier.baud_rate)
partial_nli = carrier.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * g_cut**3 * \
self._generalized_psi(carrier, carrier, f_eval, f_cut_resolution, f_cut_resolution)
return partial_nli
def _generalized_spectrally_separated_xpm(self, carrier_cut, pump_carrier):
delta_index = pump_carrier.channel_number - carrier_cut.channel_number
f_cut_resolution = self.nli_params.f_cut_resolution[f'delta_{delta_index}']
f_pump_resolution = self.nli_params.f_pump_resolution
f_eval = carrier_cut.frequency
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
g_cut = (carrier_cut.power.signal / carrier_cut.baud_rate)
partial_nli = carrier_cut.baud_rate * (16.0 / 27.0) * self.fiber_params.gamma**2 * \
g_pump**2 * g_cut * \
2 * self._generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
return partial_nli
def _generalized_gnli(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution):
delta_index = pump_carrier.channel_number - carrier_cut.channel_number
f_cut_resolution = self.nli_params.f_cut_resolution[f'delta_{delta_index}']
f_pump_resolution = self.nli_params.f_pump_resolution
g_pump = (pump_carrier.power.signal / pump_carrier.baud_rate)
g_cut = (carrier_cut.power.signal / carrier_cut.baud_rate)
chi = (16.0 / 27.0)
partial_nli = chi * self.fiber_params.gamma**2 * \
g_pump**2 * g_cut * \
2 * self._generalized_psi(carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution)
def _generalized_psi(self, carrier_cut, pump_carrier, f_eval, f_cut_resolution, f_pump_resolution):
""" It computes the generalized psi function similarly to the one used in the GN model
:return: generalized_psi
"""
# Fiber parameters
alpha0 = self.alpha0(f_eval)
beta2 = self.fiber_params.beta2
beta3 = self.fiber_params.beta3
f_ref_beta = self.fiber_params.f_ref_beta
z = self.stimulated_raman_scattering.z
frequency_rho = self.stimulated_raman_scattering.frequency
rho = self.stimulated_raman_scattering.rho
rho = rho * np.exp(np.abs(alpha0) * z / 2)
if len(frequency_rho) == 1:
rho_function = lambda f: rho[0, :]
else:
rho_function = interp1d(frequency_rho, rho, axis=0, fill_value='extrapolate')
rho_pump = rho_function(pump_carrier.frequency)
f1_array = np.arange(pump_carrier.frequency - (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
pump_carrier.frequency + (pump_carrier.baud_rate * (1 + pump_carrier.roll_off) / 2),
f_pump_resolution)
f2_array = np.arange(carrier_cut.frequency - (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
carrier_cut.frequency + (carrier_cut.baud_rate * (1 + carrier_cut.roll_off) / 2),
f_cut_resolution)
psd1 = raised_cosine_comb(f1_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
integrand_f1 = np.zeros(len(f1_array))
for f1_index, (f1, psd1_sample) in enumerate(zip(f1_array, psd1)):
f3_array = f1 + f2_array - f_eval
psd2 = raised_cosine_comb(f2_array, carrier_cut) * (carrier_cut.baud_rate / carrier_cut.power.signal)
psd3 = raised_cosine_comb(f3_array, pump_carrier) * (pump_carrier.baud_rate / pump_carrier.power.signal)
ggg = psd1_sample * psd2 * psd3
delta_beta = 4 * np.pi**2 * (f1 - f_eval) * (f2_array - f_eval) * \
(beta2 + np.pi * beta3 * (f1 + f2_array - 2 * f_ref_beta))
integrand_f2 = ggg * self._generalized_rho_nli(delta_beta, rho_pump, z, alpha0)
integrand_f1[f1_index] = np.trapz(integrand_f2, f2_array)
generalized_psi = np.trapz(integrand_f1, f1_array)
return generalized_psi
@staticmethod
def _generalized_rho_nli(delta_beta, rho_pump, z, alpha0):
w = 1j * delta_beta - alpha0
generalized_rho_nli = (rho_pump[-1]**2 * np.exp(w * z[-1]) - rho_pump[0]**2 * np.exp(w * z[0])) / w
for z_ind in range(0, len(z) - 1):
derivative_rho = (rho_pump[z_ind + 1]**2 - rho_pump[z_ind]**2) / (z[z_ind + 1] - z[z_ind])
generalized_rho_nli -= derivative_rho * (np.exp(w * z[z_ind + 1]) - np.exp(w * z[z_ind])) / (w**2)
generalized_rho_nli = np.abs(generalized_rho_nli)**2
return generalized_rho_nli