Files
oopt-gnpy/gnpy/core/parameters.py
EstherLerouzic 6c5d11d86c Implement in_voa of amplifiers
Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I24feed756586a104e829275244f0868a272e5f6b
2025-09-03 10:34:15 +02:00

732 lines
32 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# gnpy.core.parameters: parameters to configure standard network elements
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
"""
gnpy.core.parameters
====================
This module contains all parameters to configure standard network elements.
"""
from collections import namedtuple
from copy import deepcopy
from dataclasses import dataclass
from scipy.constants import c, pi
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip, linspace, full
from gnpy.core.utils import convert_length
from gnpy.core.exceptions import ParametersError
class Parameters:
def asdict(self):
class_dict = self.__class__.__dict__
instance_dict = self.__dict__
new_dict = {}
for key in class_dict:
if isinstance(class_dict[key], property):
new_dict[key] = instance_dict['_' + key]
return new_dict
class PumpParams(Parameters):
def __init__(self, power, frequency, propagation_direction):
self.power = power
self.frequency = frequency
self.propagation_direction = propagation_direction.lower()
class RamanParams(Parameters):
def __init__(self, flag=False, method='perturbative', order=2, result_spatial_resolution=10e3,
solver_spatial_resolution=10e3):
"""Simulation parameters used within the Raman Solver
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
:params method: Raman solver method
:params order: solution order for perturbative method
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
"""
self.flag = flag
self.method = method
self.order = order
self.result_spatial_resolution = result_spatial_resolution # [m]
self.solver_spatial_resolution = solver_spatial_resolution # [m]
def to_json(self):
return {"flag": self.flag,
"method": self.method,
"order": self.order,
"result_spatial_resolution": self.result_spatial_resolution,
"solver_spatial_resolution": self.solver_spatial_resolution}
class NLIParams(Parameters):
def __init__(self, method='gn_model_analytic', dispersion_tolerance=4, phase_shift_tolerance=0.1,
computed_channels=None, computed_number_of_channels=None):
"""Simulation parameters used within the Nli Solver
:params method: formula for NLI calculation
:params dispersion_tolerance: tuning parameter for ggn model solution
:params phase_shift_tolerance: tuning parameter for ggn model solution
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
:params computed_number_of_channels: the NLI is evaluated for this number of channels equally distributed
in the spectrum and extrapolated for the others
"""
self.method = method.lower()
self.dispersion_tolerance = dispersion_tolerance
self.phase_shift_tolerance = phase_shift_tolerance
self.computed_channels = computed_channels
self.computed_number_of_channels = computed_number_of_channels
def to_json(self):
return {"method": self.method,
"dispersion_tolerance": self.dispersion_tolerance,
"phase_shift_tolerance": self.phase_shift_tolerance,
"computed_channels": self.computed_channels,
"computed_number_of_channels": self.computed_number_of_channels}
class SimParams(Parameters):
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
@classmethod
def set_params(cls, sim_params):
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
@property
def nli_params(self):
return self._shared_dict['nli_params']
@property
def raman_params(self):
return self._shared_dict['raman_params']
class RoadmParams(Parameters):
def __init__(self, **kwargs):
self.target_pch_out_db = kwargs.get('target_pch_out_db')
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
temp = [kwargs.get(k) is not None for k in equalisation_type]
if sum(temp) > 1:
raise ParametersError('ROADM config contains more than one equalisation type.'
+ 'Please choose only one', kwargs)
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
try:
self.add_drop_osnr = kwargs['add_drop_osnr']
self.pmd = kwargs['pmd']
self.pdl = kwargs['pdl']
self.restrictions = kwargs['restrictions']
self.roadm_path_impairments = self.get_roadm_path_impairments(kwargs['roadm-path-impairments'])
except KeyError as e:
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
self.per_degree_impairments = kwargs.get('per_degree_impairments', [])
self.design_bands = kwargs.get('design_bands', [])
self.per_degree_design_bands = kwargs.get('per_degree_design_bands', {})
def get_roadm_path_impairments(self, path_impairments_list):
"""Get the ROADM list of profiles for impairments definition
transform the ietf model into gnpy internal model: add a path-type in the attributes
"""
if not path_impairments_list:
return {}
authorized_path_types = {
'roadm-express-path': 'express',
'roadm-add-path': 'add',
'roadm-drop-path': 'drop',
}
roadm_path_impairments = {}
for path_impairment in path_impairments_list:
index = path_impairment['roadm-path-impairments-id']
path_type = next(key for key in path_impairment if key in authorized_path_types.keys())
impairment_dict = {'path-type': authorized_path_types[path_type], 'impairment': path_impairment[path_type]}
roadm_path_impairments[index] = RoadmImpairment(impairment_dict)
return roadm_path_impairments
class RoadmPath:
def __init__(self, from_degree, to_degree, path_type, impairment_id=None, impairment=None):
"""Records roadm internal paths, types and impairment
path_type must be in "express", "add", "drop"
impairment_id must be one of the id detailed in equipement
"""
self.from_degree = from_degree
self.to_degree = to_degree
self.path_type = path_type
self.impairment_id = impairment_id
self.impairment = impairment
class RoadmImpairment:
"""Generic definition of impairments for express, add and drop"""
default_values = {
'roadm-pmd': None,
'roadm-cd': None,
'roadm-pdl': None,
'roadm-inband-crosstalk': None,
'roadm-maxloss': 0,
'roadm-osnr': None,
'roadm-pmax': None,
'roadm-noise-figure': None,
'minloss': None,
'typloss': None,
'pmin': None,
'ptyp': None
}
def __init__(self, params):
self.path_type = params.get('path-type')
self.impairments = params['impairment']
class FusedParams(Parameters):
def __init__(self, **kwargs):
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
DEFAULT_RAMAN_COEFFICIENT = {
# SSMF Raman coefficient profile in terms of mode intensity (g0 * A_ff_overlap)
'gamma_raman': array(
[0.0, 8.524419934705497e-16, 2.643567866245371e-15, 4.410548410941305e-15, 6.153422961291078e-15,
7.484924703044943e-15, 8.452060808349209e-15, 9.101549322698156e-15, 9.57837595158966e-15,
1.0008642675474562e-14, 1.0865773569905647e-14, 1.1300776305865833e-14, 1.2143238647099625e-14,
1.3231065750676068e-14, 1.4624900971525384e-14, 1.6013330554840492e-14, 1.7458119359310242e-14,
1.9320241330434762e-14, 2.1720395392873534e-14, 2.4137337406734775e-14, 2.628163218460466e-14,
2.8041019963285974e-14, 2.9723155447089933e-14, 3.129353531005888e-14, 3.251796163324624e-14,
3.3198839487612773e-14, 3.329527690685666e-14, 3.313155691238456e-14, 3.289013852154548e-14,
3.2458917188506916e-14, 3.060684277937575e-14, 3.2660349473783173e-14, 2.957419109657689e-14,
2.518894321396672e-14, 1.734560485857344e-14, 9.902860761605233e-15, 7.219176385099358e-15,
6.079565990401311e-15, 5.828373065963427e-15, 7.20580801091692e-15, 7.561924351387493e-15,
7.621152352332206e-15, 6.8859886780643254e-15, 5.629181047471162e-15, 3.679727598966185e-15,
2.7555869742500355e-15, 2.4810133942597675e-15, 2.2160080532403624e-15, 2.1440626024765557e-15,
2.33873070799544e-15, 2.557317929858713e-15, 3.039839048226572e-15, 4.8337165515610065e-15,
5.4647431818257436e-15, 5.229187813711269e-15, 4.510768525811313e-15, 3.3213473130607794e-15,
2.2602577027996455e-15, 1.969576495866441e-15, 1.5179853954188527e-15, 1.2953988551200156e-15,
1.1304672156251838e-15, 9.10004390675213e-16, 8.432919922183503e-16, 7.849224069008326e-16,
7.827568196032024e-16, 9.000514440646232e-16, 1.3025926460013665e-15, 1.5444108938497558e-15,
1.8795594063060786e-15, 1.7796130169921014e-15, 1.5938159865046653e-15, 1.1585522355108287e-15,
8.507044444633358e-16, 7.625404663756823e-16, 8.14510750925789e-16, 9.047944693473188e-16,
9.636431901702084e-16, 9.298633899602105e-16, 8.349739503637023e-16, 7.482901278066085e-16,
6.240794767134268e-16, 5.00652535687506e-16, 3.553373263685851e-16, 2.0344217706119682e-16,
1.4267522642294203e-16, 8.980016576743517e-17, 2.9829068181832594e-17, 1.4861959129014824e-17,
7.404482113326137e-18]
), # m/W
# SSMF Raman coefficient profile
'g0': array(
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
), # [1 / (W m)]
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
'frequency_offset': array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
12., 12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75,
19., 19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5,
29., 29.5, 30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5,
39., 39.5, 40., 40.5, 41., 41.5, 42.]) * 1e12, # [Hz]
# Raman profile reference frequency
'reference_frequency': 206.184634112792e12, # [Hz] (1454 nm)
# Raman profile reference effective area
'reference_effective_area': 75.74659443542413e-12 # [m^2] (@1454 nm)
}
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
""" Raman Gain Coefficient Parameters
Based on:
Andrea DAmico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
J. Lightwave Technol. 40, 3499-3511 (2022)
Section III.D
"""
class FiberParams(Parameters):
def __init__(self, **kwargs):
try:
self._length = convert_length(kwargs['length'], kwargs['length_units'])
# fixed attenuator for padding
self._att_in = kwargs.get('att_in', 0)
# if not defined in the network json connector loss in/out
# the None value will be updated in network.py[build_network]
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs.get('con_in')
self._con_out = kwargs.get('con_out')
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self._ref_wavelength
elif 'ref_frequency' in kwargs:
self._ref_frequency = kwargs['ref_frequency']
self._ref_wavelength = c / self._ref_frequency
else:
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
self._ref_frequency = c / self._ref_wavelength
# Chromatic Dispersion
if 'dispersion_per_frequency' in kwargs:
# Frequency-dependent dispersion
self._dispersion = asarray(kwargs['dispersion_per_frequency']['value']) # s/m/m
self._f_dispersion_ref = asarray(kwargs['dispersion_per_frequency']['frequency']) # Hz
self._dispersion_slope = None
elif 'dispersion' in kwargs:
# Single value dispersion
self._dispersion = asarray(kwargs['dispersion']) # s/m/m
self._dispersion_slope = kwargs.get('dispersion_slope') # s/m/m/m
self._f_dispersion_ref = asarray(self._ref_frequency) # Hz
else:
# Default single value dispersion
self._dispersion = asarray(1.67e-05) # s/m/m
self._dispersion_slope = None
self._f_dispersion_ref = asarray(self.ref_frequency) # Hz
# Effective Area and Nonlinear Coefficient
self._effective_area = kwargs.get('effective_area') # m^2
self._n1 = 1.468
self._core_radius = 4.2e-6 # m
self._n2 = 2.6e-20 # m^2/W
if self._effective_area is not None:
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
elif 'gamma' in kwargs:
self._gamma = kwargs['gamma'] # 1/W/m
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
else:
self._effective_area = 83e-12 # m^2
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
pi * self._core_radius ** 2 / self._effective_area)) ** 2
# Raman Gain Coefficient
raman_coefficient = kwargs.get('raman_coefficient')
if raman_coefficient is None:
self._raman_reference_frequency = DEFAULT_RAMAN_COEFFICIENT['reference_frequency']
frequency_offset = asarray(DEFAULT_RAMAN_COEFFICIENT['frequency_offset'])
gamma_raman = asarray(DEFAULT_RAMAN_COEFFICIENT['gamma_raman'])
stokes_wave = self._raman_reference_frequency - frequency_offset
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
self._g0 = gamma_raman / self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
else:
self._raman_reference_frequency = raman_coefficient['reference_frequency']
frequency_offset = asarray(raman_coefficient['frequency_offset'])
stokes_wave = self._raman_reference_frequency - frequency_offset
self._g0 = asarray(raman_coefficient['g0'])
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, self._raman_reference_frequency)
normalized_gamma_raman = gamma_raman / self._raman_reference_frequency # 1 / m / W / Hz
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
# represent a positive power transfer from higher frequency and vice versa
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
# Polarization Mode Dispersion
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
self._pmd_coef_defined = kwargs.get('pmd_coef_defined', kwargs['pmd_coef'] is True)
# Loss Coefficient
if isinstance(kwargs['loss_coef'], dict):
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(self._ref_frequency) # Hz
# Lumped Losses
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
self._latency = self._length / (c / self._n1) # s
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
@property
def length(self):
return self._length
@length.setter
def length(self, length):
"""length must be in m"""
self._length = length
@property
def att_in(self):
return self._att_in
@att_in.setter
def att_in(self, att_in):
self._att_in = att_in
@property
def con_in(self):
return self._con_in
@con_in.setter
def con_in(self, con_in):
self._con_in = con_in
@property
def con_out(self):
return self._con_out
@property
def lumped_losses(self):
return self._lumped_losses
@con_out.setter
def con_out(self, con_out):
self._con_out = con_out
@property
def dispersion(self):
return self._dispersion
@property
def f_dispersion_ref(self):
return self._f_dispersion_ref
@property
def dispersion_slope(self):
return self._dispersion_slope
@property
def gamma(self):
return self._gamma
def effective_area_scaling(self, frequency):
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
w = self._core_radius / sqrt(log(V))
return asarray(pi * w ** 2)
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
effective_area_pump = self.effective_area_scaling(frequency_pump)
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
def gamma_scaling(self, frequency):
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
@property
def pmd_coef(self):
return self._pmd_coef
@property
def pmd_coef_defined(self):
return self._pmd_coef_defined
@property
def ref_wavelength(self):
return self._ref_wavelength
@property
def ref_frequency(self):
return self._ref_frequency
@property
def loss_coef(self):
return self._loss_coef
@property
def f_loss_ref(self):
return self._f_loss_ref
@property
def raman_coefficient(self):
return self._raman_coefficient
@property
def latency(self):
return self._latency
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
dictionary['length_units'] = 'm'
if len(self.lumped_losses) == 0:
dictionary.pop('lumped_losses')
if not self.raman_coefficient:
dictionary.pop('raman_coefficient')
else:
raman_frequency_offset = \
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
'frequency_offset': raman_frequency_offset.tolist(),
'reference_frequency': self._raman_reference_frequency}
return dictionary
class EdfaParams:
default_values = {
'f_min': None,
'f_max': None,
'multi_band': None,
'bands': None,
'type_variety': '',
'type_def': '',
'gain_flatmax': None,
'gain_min': None,
'p_max': None,
'nf_model': None,
'dual_stage_model': None,
'preamp_variety': None,
'booster_variety': None,
'nf_min': None,
'nf_max': None,
'nf_coef': None,
'nf0': None,
'nf_fit_coeff': None,
'nf_ripple': 0,
'dgt': None,
'gain_ripple': 0,
'tilt_ripple': 0,
'f_ripple_ref': None,
'out_voa_auto': False,
'allowed_for_design': False,
'raman': False,
'pmd': 0,
'pdl': 0,
'advance_configurations_from_json': None
}
def __init__(self, **params):
try:
self.type_variety = params['type_variety']
self.type_def = params['type_def']
# Bandwidth
self.f_min = params['f_min']
self.f_max = params['f_max']
self.bandwidth = self.f_max - self.f_min if self.f_max and self.f_min else None
self.f_cent = (self.f_max + self.f_min) / 2 if self.f_max and self.f_min else None
self.f_ripple_ref = params['f_ripple_ref']
self.bands = [{'f_min': params['f_min'],
'f_max': params['f_max']}]
# Gain
self.gain_flatmax = params['gain_flatmax']
self.gain_min = params['gain_min']
gain_ripple = params['gain_ripple']
if gain_ripple == 0:
self.gain_ripple = asarray([0, 0])
self.f_ripple_ref = asarray([self.f_min, self.f_max])
else:
self.gain_ripple = asarray(gain_ripple)
if self.f_ripple_ref is not None:
if (self.f_ripple_ref[0] != self.f_min) or (self.f_ripple_ref[-1] != self.f_max):
raise ParametersError("The reference ripple frequency maximum and minimum have to coincide "
"with the EDFA frequency maximum and minimum.")
elif self.gain_ripple.size != self.f_ripple_ref.size:
raise ParametersError("The reference ripple frequency and the gain ripple must have the same "
"size.")
else:
self.f_ripple_ref = linspace(self.f_min, self.f_max, self.gain_ripple.size)
tilt_ripple = params['tilt_ripple']
if tilt_ripple == 0:
self.tilt_ripple = full(self.gain_ripple.size, 0)
else:
self.tilt_ripple = asarray(tilt_ripple)
if self.tilt_ripple.size != self.gain_ripple.size:
raise ParametersError("The tilt ripple and the gain ripple must have the same size.")
# Power
self.p_max = params['p_max']
# Noise Figure
self.nf_model = params['nf_model']
self.nf_min = params['nf_min']
self.nf_max = params['nf_max']
self.nf_coef = params['nf_coef']
self.nf0 = params['nf0']
self.nf_fit_coeff = params['nf_fit_coeff']
nf_ripple = params['nf_ripple']
if nf_ripple == 0:
self.nf_ripple = full(self.gain_ripple.size, 0)
else:
self.nf_ripple = asarray(nf_ripple)
if self.nf_ripple.size != self.gain_ripple.size:
raise ParametersError(
"The noise figure ripple and the gain ripple must have the same size. %s, %s",
self.nf_ripple.size, self.gain_ripple.size)
# VOA
self.out_voa_auto = params['out_voa_auto']
# Dual Stage
self.dual_stage_model = params['dual_stage_model']
if self.dual_stage_model is not None:
# Preamp
self.preamp_variety = params['preamp_variety']
self.preamp_type_def = params['preamp_type_def']
self.preamp_nf_model = params['preamp_nf_model']
self.preamp_nf_fit_coeff = params['preamp_nf_fit_coeff']
self.preamp_gain_min = params['preamp_gain_min']
self.preamp_gain_flatmax = params['preamp_gain_flatmax']
# Booster
self.booster_variety = params['booster_variety']
self.booster_type_def = params['booster_type_def']
self.booster_nf_model = params['booster_nf_model']
self.booster_nf_fit_coeff = params['booster_nf_fit_coeff']
self.booster_gain_min = params['booster_gain_min']
self.booster_gain_flatmax = params['booster_gain_flatmax']
# Others
self.pmd = params['pmd']
self.pdl = params['pdl']
self.raman = params['raman']
self.dgt = params['dgt']
self.advance_configurations_from_json = params['advance_configurations_from_json']
# Design
self.allowed_for_design = params['allowed_for_design']
except KeyError as e:
raise ParametersError(f'Edfa configurations json must include {e}. Configuration: {params}')
def update_params(self, kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
class EdfaOperational:
default_values = {
'gain_target': None,
'delta_p': None,
'out_voa': None,
'in_voa': 0,
'tilt_target': None
}
def __init__(self, **operational):
self.update_attr(operational)
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
def __repr__(self):
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')
DEFAULT_EDFA_CONFIG = {
"nf_ripple": [
0.0
],
"gain_ripple": [
0.0
],
"f_min": 191.275e12,
"f_max": 196.125e12,
"dgt": [
1.0, 1.017807767853702, 1.0356155337864215, 1.0534217504465226, 1.0712204022764056, 1.0895983485572227,
1.108555289615659, 1.1280891949729075, 1.1476135933863398, 1.1672278304018044, 1.1869318618366975,
1.2067249615595257, 1.2264996957264114, 1.2428104897182262, 1.2556591482982988, 1.2650555289898042,
1.2744470198196236, 1.2838336236692311, 1.2932153453410835, 1.3040618749785347, 1.316383926863083,
1.3301807335621048, 1.3439818461440451, 1.3598972673004606, 1.3779439775587023, 1.3981208704326855,
1.418273806730323, 1.4340878115214444, 1.445565137158368, 1.45273959485914, 1.4599103316162523,
1.4670307626366115, 1.474100442252211, 1.48111939735681, 1.488134243479226, 1.495145456062699,
1.502153039909686, 1.5097346239790443, 1.5178910621476225, 1.5266220576235803, 1.5353620432989845,
1.545374152761467, 1.5566577309558969, 1.569199764184379, 1.5817353179379183, 1.5986915141218316,
1.6201194134191075, 1.6460167077689267, 1.6719047669939942, 1.6918150918099673, 1.7057507692361864,
1.7137640932265894, 1.7217732861435076, 1.7297783508684146, 1.737780757913635, 1.7459181197626403,
1.7541903672600494, 1.7625959636196327, 1.7709972329654864, 1.7793941781790852, 1.7877868031023945,
1.7961751115773796, 1.8045606557581335, 1.8139629377087627, 1.824381436842932, 1.835814081380705,
1.847275503201129, 1.862235672444246, 1.8806927939516411, 1.9026104247588487, 1.9245345552113182,
1.9482128147680253, 1.9736443063300082, 2.0008103857988204, 2.0279625371819305, 2.055100772005235,
2.082225099873648, 2.1183028432496016, 2.16337565384239, 2.2174389328192197, 2.271520771371253,
2.322373696229342, 2.3699990328716107, 2.414398437185221, 2.4587748041127506, 2.499446286796604,
2.5364027376452056, 2.5696460593920065, 2.602860350286428, 2.630396440815385, 2.6521732021128046,
2.6681935771243177, 2.6841217449620203, 2.6947834587664494, 2.705443819238505, 2.714526681131686
]
}
class MultiBandParams:
default_values = {
'bands': [],
'type_variety': '',
'type_def': None,
'allowed_for_design': False
}
def __init__(self, **params):
try:
self.update_attr(params)
except KeyError as e:
raise ParametersError(f'Multiband configurations json must include {e}. Configuration: {params}')
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
# use deepcopy to avoid sharing same object amongst all instance when v is a list or a dict!
if isinstance(v, (list, dict)):
setattr(self, k, clean_kwargs.get(k, deepcopy(v)))
else:
setattr(self, k, clean_kwargs.get(k, v))
class TransceiverParams:
def __init__(self, **params):
self.design_bands = params.get('design_bands', [])
self.per_degree_design_bands = params.get('per_degree_design_bands', {})
@dataclass
class FrequencyBand:
"""Frequency band
"""
f_min: float
f_max: float
DEFAULT_BANDS_DEFINITION = {
"LBAND": FrequencyBand(f_min=187e12, f_max=189e12),
"CBAND": FrequencyBand(f_min=191.3e12, f_max=196.0e12)
}
# use this definition to index amplifiers'element of a multiband amplifier.
# this is not the design band
def find_band_name(band: FrequencyBand) -> str:
"""return the default band name (CBAND, LBAND, ...) that corresponds to the band frequency range
Use the band center frequency: if center frequency is inside the band then returns CBAND.
This is to flexibly encompass all kind of bands definitions.
returns the first matching band name.
"""
for band_name, frequency_range in DEFAULT_BANDS_DEFINITION.items():
center_frequency = (band.f_min + band.f_max) / 2
if center_frequency >= frequency_range.f_min and center_frequency <= frequency_range.f_max:
return band_name
return 'unknown_band'