Files
oopt-gnpy/tests/test_amplifier.py
EstherLerouzic f2039fbe1c fix: use loaded json instead of Path for extra configs
In order to be used by API.

Co-authored-by: Renato Ambrosone <renato.ambrosone@polito.it>

Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com>
Change-Id: I12111427c8a90b85b3158cdd95f4ee771cb39316
2025-09-26 11:17:45 +02:00

713 lines
26 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: BSD-3-Clause
# test_amplifier
# Copyright (C) 2025 Telecom Infra Project and GNPy contributors
# see AUTHORS.rst for a list of contributors
from pathlib import Path
import pytest
from numpy import zeros, array
from numpy.testing import assert_allclose
from gnpy.core.elements import Transceiver, Edfa, Fiber
from gnpy.core.utils import automatic_fmax, lin2db, db2lin, merge_amplifier_restrictions, dbm2watt, watt2dbm
from gnpy.core.info import create_input_spectral_information, create_arbitrary_spectral_information
from gnpy.core.network import build_network, set_amplifier_voa
from gnpy.tools.json_io import load_network, load_equipment, load_json, _equipment_from_json, network_from_json
from gnpy.topology.request import PathRequest
TEST_DIR = Path(__file__).parent
DATA_DIR = TEST_DIR / 'data'
test_network = DATA_DIR / 'test_network.json'
eqpt_library = DATA_DIR / 'eqpt_config.json'
extra_configs = {"std_medium_gain_advanced_config.json": load_json(DATA_DIR / "std_medium_gain_advanced_config.json")}
# TODO in elements.py code: pytests doesn't pass with 1 channel: interpolate fail
@pytest.fixture(
params=[(96, 0.05e12), (60, 0.075e12), (45, 0.1e12), (2, 0.1e12)],
ids=['50GHz spacing', '75GHz spacing', '100GHz spacing', '2 channels'])
def nch_and_spacing(request):
"""parametrize channel count vs channel spacing (Hz)"""
yield request.param
@pytest.fixture()
def bw():
"""parametrize signal bandwidth (Hz)"""
return 45e9
def pathrequest(pch_dbm, p_tot_dbm):
"""create ref channel for defined power settings
"""
params = {
"power": dbm2watt(pch_dbm),
"tx_power": dbm2watt(pch_dbm),
"nb_channel": round(dbm2watt(p_tot_dbm) / dbm2watt(pch_dbm), 0),
'request_id': None,
'trx_type': None,
'trx_mode': None,
'source': None,
'destination': None,
'bidir': False,
'nodes_list': [],
'loose_list': [],
'format': '',
'baud_rate': None,
'bit_rate': None,
'roll_off': None,
'OSNR': None,
'penalties': None,
'path_bandwidth': None,
'effective_freq_slot': None,
'f_min': None,
'f_max': None,
'spacing': None,
'min_spacing': None,
'cost': None,
'equalization_offset_db': None,
'tx_osnr': None
}
return PathRequest(**params)
@pytest.fixture()
def setup_edfa_variable_gain():
"""init edfa class by reading test_network.json file
remove all gain and nf ripple"""
equipment = load_equipment(eqpt_library, extra_configs)
network = load_network(test_network, equipment)
build_network(network, equipment, pathrequest(0, 20))
edfa = [n for n in network.nodes() if isinstance(n, Edfa)][0]
edfa.gain_ripple = zeros(96)
edfa.interpol_nf_ripple = zeros(96)
yield edfa
@pytest.fixture()
def setup_edfa_fixed_gain():
"""init edfa class by reading the 2nd edfa in test_network.json file"""
equipment = load_equipment(eqpt_library, extra_configs)
network = load_network(test_network, equipment)
build_network(network, equipment, pathrequest(0, 20))
edfa = [n for n in network.nodes() if isinstance(n, Edfa)][1]
yield edfa
@pytest.fixture()
def setup_trx():
"""init transceiver class to access snr and osnr calculations"""
equipment = load_equipment(eqpt_library, extra_configs)
network = load_network(test_network, equipment)
build_network(network, equipment, pathrequest(0, 20))
trx = [n for n in network.nodes() if isinstance(n, Transceiver)][0]
return trx
@pytest.fixture()
def si(nch_and_spacing, bw):
"""parametrize a channel comb with nb_channel, spacing and signal bw"""
nb_channel, spacing = nch_and_spacing
f_min = 191.3e12
f_max = automatic_fmax(f_min, spacing, nb_channel)
return create_input_spectral_information(f_min=f_min, f_max=f_max, roll_off=0.15, baud_rate=bw,
spacing=spacing, tx_osnr=40.0, tx_power=1e-3)
@pytest.mark.parametrize("gain, nf_expected", [(10, 15), (15, 10), (25, 5.8)])
def test_variable_gain_nf(gain, nf_expected, setup_edfa_variable_gain, si):
"""=> unitary test for variable gain model Edfa._calc_nf() (and Edfa.interpol_params)"""
edfa = setup_edfa_variable_gain
si.signal /= db2lin(gain)
si.nli /= db2lin(gain)
si.ase /= db2lin(gain)
edfa.operational.gain_target = gain
edfa.effective_gain = gain
edfa.interpol_params(si)
result = edfa.nf
assert pytest.approx(nf_expected, abs=0.01) == result[0]
@pytest.mark.parametrize("gain, nf_expected", [(15, 10), (20, 5), (25, 5)])
def test_fixed_gain_nf(gain, nf_expected, setup_edfa_fixed_gain, si):
"""=> unitary test for fixed gain model Edfa._calc_nf() (and Edfa.interpol_params)"""
edfa = setup_edfa_fixed_gain
si.signal /= db2lin(gain)
si.nli /= db2lin(gain)
si.ase /= db2lin(gain)
edfa.operational.gain_target = gain
edfa.effective_gain = gain
edfa.interpol_params(si)
assert pytest.approx(nf_expected, abs=0.01) == edfa.nf[0]
def test_si(si, nch_and_spacing):
"""basic total power check of the channel comb generation"""
nb_channel = nch_and_spacing[0]
p_tot = sum(si.signal + si.ase + si.nli)
expected_p_tot = si.signal[0] * nb_channel
assert pytest.approx(expected_p_tot, abs=0.01) == p_tot
@pytest.mark.parametrize("gain", [17, 19, 21, 23])
def test_compare_nf_models(gain, setup_edfa_variable_gain, si):
"""compare the 2 amplifier models (polynomial and estimated from nf_min and max)
=> nf_model vs nf_poly_fit for intermediate gain values:
between gain_min and gain_flatmax some discrepancy is expected but target < 0.5dB
=> unitary test for Edfa._calc_nf (and Edfa.interpol_params)"""
edfa = setup_edfa_variable_gain
si.signal /= db2lin(gain)
si.nli /= db2lin(gain)
si.ase /= db2lin(gain)
edfa.operational.gain_target = gain
edfa.effective_gain = gain
# edfa is variable gain type
edfa.interpol_params(si)
nf_model = edfa.nf[0]
# change edfa type variety to a polynomial
el_config = {
"uid": "Edfa1",
"operational": {
"gain_target": gain,
"tilt_target": 0
},
"metadata": {
"location": {
"region": "",
"latitude": 2,
"longitude": 0
}
}
}
equipment = load_equipment(eqpt_library, extra_configs)
extra_params = equipment['Edfa']['CienaDB_medium_gain']
temp = el_config.setdefault('params', {})
temp = merge_amplifier_restrictions(temp, extra_params.__dict__)
el_config['params'] = temp
edfa = Edfa(**el_config)
# edfa is variable gain type
edfa.interpol_params(si)
nf_poly = edfa.nf[0]
print(nf_poly, nf_model)
assert pytest.approx(nf_model, abs=0.5) == nf_poly
@pytest.mark.parametrize("gain", [13, 15, 17, 19, 21, 23, 25, 27])
def test_ase_noise(gain, si, setup_trx, bw):
"""testing 3 different ways of calculating osnr:
1-pin-edfa.nf+58 vs
2-pout/pase afet propagate
3-Transceiver osnr_ase_01nm
=> unitary test for Edfa.noise_profile (Edfa.interpol_params, Edfa.propagate)"""
equipment = load_equipment(eqpt_library, extra_configs)
network = load_network(test_network, equipment)
edfa = next(n for n in network.nodes() if n.uid == 'Edfa1')
span = next(n for n in network.nodes() if n.uid == 'Span1')
# update span1 and Edfa1 according to new gain before building network
# updating span 1 avoids to overload amp
span.params.length = gain * 1e3 / 0.2
edfa.operational.gain_target = gain
build_network(network, equipment, pathrequest(0, 20))
edfa.gain_ripple = zeros(96)
edfa.interpol_nf_ripple = zeros(96)
# propagate in span1 to have si with the correct power level
si = span(si)
print(span)
edfa.interpol_params(si)
nf = edfa.nf
print('nf', nf)
pin = lin2db((si.signal[0] + si.ase[0] + si.nli[0]) * 1e3)
osnr_expected = pin - nf[0] + 58
si = edfa(si)
print(edfa)
osnr = lin2db(si.signal[0] / si.ase[0]) - lin2db(12.5e9 / bw)
assert pytest.approx(osnr_expected, abs=0.01) == osnr
trx = setup_trx
si = trx(si)
osnr = trx.osnr_ase_01nm[0]
assert pytest.approx(osnr_expected, abs=0.01) == osnr
@pytest.mark.parametrize('delta_p', [0, None, 2])
@pytest.mark.parametrize('tilt_target', [0, -4])
def test_amp_behaviour(tilt_target, delta_p):
"""Check that amp correctly applies saturation, when there is tilt
"""
json_data = {
"elements": [{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "test",
"operational": {
"delta_p": delta_p,
"gain_target": 20 + delta_p if delta_p else 20,
"tilt_target": tilt_target,
"out_voa": 0
}
}, {
"uid": "Span1",
"type": "Fiber",
"type_variety": "SSMF",
"params": {
"length": 100,
"loss_coef": 0.2,
"length_units": "km"
}
}],
"connections": []
}
equipment = load_equipment(eqpt_library, extra_configs)
network = network_from_json(json_data, equipment)
edfa = [n for n in network.nodes() if isinstance(n, Edfa)][0]
fiber = [n for n in network.nodes() if isinstance(n, Fiber)][0]
fiber.params.con_in = 0
fiber.params.con_out = 0
fiber.ref_pch_in_dbm = 0.0
si = create_input_spectral_information(f_min=191.3e12, f_max=196.05e12, roll_off=0.15, baud_rate=64e9,
spacing=75e9, tx_osnr=None, tx_power=1e-3)
si = fiber(si)
total_sig_powerin = sum(si.signal)
sig_in = lin2db(si.signal)
si = edfa(si)
sig_out = lin2db(si.signal)
total_sig_powerout = sum(si.signal)
gain = lin2db(total_sig_powerout / total_sig_powerin)
expected_total_power_out = total_sig_powerin * 100 * db2lin(delta_p) if delta_p else total_sig_powerin * 100
assert pytest.approx(total_sig_powerout, abs=1e-6) == min(expected_total_power_out, dbm2watt(21))
assert pytest.approx(edfa.effective_gain, 1e-5) == gain
assert watt2dbm(sum(si.signal + si.nli + si.ase)) <= 21.01
# If there is no tilt on the amp: the gain is identical for all carriers
if tilt_target == 0:
assert_allclose(sig_in + gain, sig_out, rtol=1e-13)
else:
if delta_p != 2:
expected_sig_out = [
-31.95025022, -31.88168886, -31.81178634, -31.73838831, -31.66318631,
-31.58762141, -31.51156294, -31.43760161, -31.38124626, -31.34245197,
-31.30629475, -31.26970711, -31.22566555, -31.17412914, -31.11806869,
-31.05122228, -30.97358131, -30.90658619, -30.86616148, -30.83854197,
-30.81115028, -30.78403337, -30.7570206, -30.73002834, -30.70088634,
-30.66844432, -30.63427939, -30.59364514, -30.54659009, -30.49180643,
-30.41406352, -30.31434813, -30.22984104, -30.18249387, -30.1516453,
-30.12082034, -30.08970494, -30.05779424, -30.02543415, -29.99309889,
-29.96078803, -29.92798594, -29.89002127, -29.84689015, -29.79726968,
-29.72927112, -29.64485972, -29.55578693, -29.45569694, -29.35111795,
-29.24662471, -29.12148491, -28.94244964, -28.73421833, -28.53930479,
-28.36231261, -28.19361236, -28.04376778, -27.91280403, -27.79433658,
-27.7065072, -27.64495288, -27.59798975]
else:
expected_sig_out = [
-29.95025022, -29.88168886, -29.81178634, -29.73838831, -29.66318631,
-29.58762141, -29.51156294, -29.43760161, -29.38124626, -29.34245197,
-29.30629475, -29.26970711, -29.22566555, -29.17412914, -29.11806869,
-29.05122228, -28.97358131, -28.90658619, -28.86616148, -28.83854197,
-28.81115028, -28.78403337, -28.7570206, -28.73002834, -28.70088634,
-28.66844432, -28.63427939, -28.59364514, -28.54659009, -28.49180643,
-28.41406352, -28.31434813, -28.22984104, -28.18249387, -28.1516453,
-28.12082034, -28.08970494, -28.05779424, -28.02543415, -27.99309889,
-27.96078803, -27.92798594, -27.89002127, -27.84689015, -27.79726968,
-27.72927112, -27.64485972, -27.55578693, -27.45569694, -27.35111795,
-27.24662471, -27.12148491, -26.94244964, -26.73421833, -26.53930479,
-26.36231261, -26.19361236, -26.04376778, -25.91280403, -25.79433658,
-25.7065072, -25.64495288, -25.59798975]
print(sig_out)
assert_allclose(sig_out, expected_sig_out, rtol=1e-9)
@pytest.mark.parametrize('delta_p', [0, None, 20])
@pytest.mark.parametrize('base_power', [0, 20])
@pytest.mark.parametrize('delta_pdb_per_channel',
[[0, 1, 3, 0.5, -2],
[0, 0, 0, 0, 0],
[-2, -2, -2, -2, -2],
[0, 2, -2, -5, 4],
[0, 1, 3, 0.5, -2], ])
def test_amp_saturation(delta_pdb_per_channel, base_power, delta_p):
"""Check that amp correctly applies saturation
"""
json_data = {
"elements": [{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "test",
"operational": {
"delta_p": delta_p,
"gain_target": 20,
"tilt_target": 0,
"out_voa": 0
}
}],
"connections": []
}
equipment = load_equipment(eqpt_library, extra_configs)
network = network_from_json(json_data, equipment)
edfa = [n for n in network.nodes()][0]
frequency = 193e12 + array([0, 50e9, 150e9, 225e9, 275e9])
slot_width = array([37.5e9, 50e9, 75e9, 50e9, 37.5e9])
baud_rate = array([32e9, 42e9, 64e9, 42e9, 32e9])
signal = dbm2watt(array([-20.0, -18.0, -22.0, -25.0, -16.0]) + array(delta_pdb_per_channel) + base_power)
si = create_arbitrary_spectral_information(frequency=frequency, slot_width=slot_width,
signal=signal, baud_rate=baud_rate, roll_off=0.15,
delta_pdb_per_channel=delta_pdb_per_channel,
tx_osnr=None, tx_power=None)
total_sig_powerin = sum(si.signal)
sig_in = lin2db(si.signal)
si = edfa(si)
sig_out = lin2db(si.signal)
total_sig_powerout = sum(si.signal)
gain = lin2db(total_sig_powerout / total_sig_powerin)
assert watt2dbm(sum(si.signal + si.nli + si.ase)) <= 21.02
assert pytest.approx(edfa.effective_gain, 1e-13) == gain
assert_allclose(sig_in + gain, sig_out, rtol=1e-13)
def test_set_out_voa():
"""Check that out_voa is correctly set if out_voa_auto is true
gain is maximized to obtain better NF:
if optimum input power in next span is -3 + pref_ch_db then total power at optimum is 19 -3 = 16dBm.
since amp has 21 dBm p_max, power out of amp can be set to 21dBm increasing out_voa by 5 to keep
same input power in the fiber. Since the optimisation contains a hard coded margin of 1 to account for
possible degradation on max power, the expected voa value is 4, and delta_p and gain are corrected
accordingly.
"""
json_data = {
"elements": [{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "test",
"operational": {
"delta_p": -3,
"gain_target": 20,
"tilt_target": 0
}
}],
"connections": []
}
equipment = load_equipment(eqpt_library, extra_configs)
network = network_from_json(json_data, equipment)
amp = [n for n in network.nodes()][0]
print(amp.out_voa)
power_target = 19 + amp.delta_p
power_mode = True
amp.params.out_voa_auto = True
set_amplifier_voa(amp, power_target, power_mode,
voa_margin=equipment['Span']['default'].voa_margin, voa_step=equipment['Span']['default'].voa_step)
assert amp.out_voa == 4.0
assert amp.effective_gain == 20.0 + 4.0
assert amp.delta_p == -3.0 + 4.0
def test_multiband():
equipment_json = load_json(eqpt_library)
# add some multiband amplifiers
amps = [
{
"type_variety": "std_medium_gain_C",
"f_min": 191.25e12,
"f_max": 196.15e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": False,
"allowed_for_design": True},
{
"type_variety": "std_medium_gain_L",
"f_min": 186.55e12,
"f_max": 190.05e12,
"type_def": "variable_gain",
"gain_flatmax": 26,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": False,
"allowed_for_design": True},
{
"type_variety": "std_medium_gain_multiband",
"type_def": "multi_band",
"amplifiers": [
"std_medium_gain_C",
"std_medium_gain_L"
],
"allowed_for_design": False
}
]
equipment_json['Edfa'].extend(amps)
equipment = _equipment_from_json(equipment_json, extra_configs)
el_config = {
"uid": "Edfa1",
"type": "Multiband_amplifier",
"type_variety": "std_medium_gain_multiband",
"amplifiers": [
{
"type_variety": "std_medium_gain_C",
"operational": {
"gain_target": 22.55,
"delta_p": 0.9,
"out_voa": 3.0,
"tilt_target": 0.0,
}
},
{
"type_variety": "std_medium_gain_L",
"operational": {
"gain_target": 21,
"delta_p": 3.0,
"out_voa": 3.0,
"tilt_target": 0.0,
}
}
]
}
fused_config = {
"uid": "[83/WR-2-4-SIG=>930/WRT-1-2-SIG]-Tl/9300",
"type": "Fused",
"params": {
"loss": 20
}
}
json_data = {
"elements": [
el_config,
fused_config
],
"connections": []
}
network = network_from_json(json_data, equipment)
amp = next(n for n in network.nodes() if n.uid == 'Edfa1')
fused = next(n for n in network.nodes() if n.uid == '[83/WR-2-4-SIG=>930/WRT-1-2-SIG]-Tl/9300')
si = create_input_spectral_information(f_min=186e12, f_max=196e12, roll_off=0.15, baud_rate=32e9, tx_power=1e-3,
spacing=50e9, tx_osnr=40.0)
assert si.number_of_channels == 200
si = fused(si)
si = amp(si)
# assert nb of channel after mux/demux
assert si.number_of_channels == 164 # computed based on amp bands
# Check that multiband amp is correctly created with correct __str__
actual_c_amp = amp.amplifiers["CBAND"].__str__()
expected_c_amp = '\n'.join([
'Edfa Edfa1',
' type_variety: std_medium_gain_C',
' effective gain(dB): 21.22',
' (before att_in and before output VOA)',
' tilt-target(dB) 0.00',
' noise figure (dB): 6.32',
' (including att_in)',
' pad att_in (dB): 0.00',
' Power In (dBm): -0.22',
' Power Out (dBm): 21.01',
' Delta_P (dB): 0.90',
' target pch (dBm): None',
' actual pch out (dBm): -1.77',
' output VOA (dB): 3.00'])
assert actual_c_amp == expected_c_amp
actual_l_amp = amp.amplifiers["LBAND"].__str__()
expected_l_amp = '\n'.join([
'Edfa Edfa1',
' type_variety: std_medium_gain_L',
' effective gain(dB): 21.00',
' (before att_in and before output VOA)',
' tilt-target(dB) 0.00',
' noise figure (dB): 6.36',
' (including att_in)',
' pad att_in (dB): 0.00',
' Power In (dBm): -1.61',
' Power Out (dBm): 19.40',
' Delta_P (dB): 3.00',
' target pch (dBm): None',
' actual pch out (dBm): -1.99',
' output VOA (dB): 3.00'])
assert actual_l_amp == expected_l_amp
# check that f_min, f_max of si are within amp band
assert amp.amplifiers["LBAND"].params.f_min == 186.55e12
assert si.frequency[0] >= amp.amplifiers["LBAND"].params.f_min
assert amp.amplifiers["CBAND"].params.f_max == 196.15e12
assert si.frequency[-1] <= amp.amplifiers["CBAND"].params.f_max
for freq in si.frequency:
if freq > 190.05e12:
assert freq >= 191.25e12
if freq < 191.25e12:
assert freq <= 190.25e12
def test_user_defined_config():
"""Checks that a user defined config is correctly used instead of DEFAULT_EDFA_CONFIG
"""
extra_configs['user_edfa_config.json'] = load_json(DATA_DIR / 'user_edfa_config.json')
user_edfa = {
"type_variety": "user_defined",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"default_config_from_json": "user_edfa_config.json",
"out_voa_auto": False,
"allowed_for_design": True
}
# add the reference to
json_data = load_json(eqpt_library)
json_data['Edfa'].append(user_edfa)
equipment = _equipment_from_json(json_data, extra_configs)
json_data = {
"elements": [{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "user_defined",
"operational": {
"delta_p": -3,
"gain_target": 20,
"tilt_target": 0,
"out_voa": 0
}
}],
"connections": []
}
network = network_from_json(json_data, equipment)
amp = [n for n in network.nodes()][0]
assert_allclose(amp.params.f_min, 193.0e12, rtol=1e-13)
assert_allclose(amp.params.f_max, 195.0e12, rtol=1e-13)
assert_allclose(amp.params.gain_ripple[15], 0.01027114740367, rtol=1e-13)
assert_allclose(amp.params.nf_ripple[15], 0.0, rtol=1e-13)
assert_allclose(amp.params.dgt[15], 1.847275503201129, rtol=1e-13)
def test_default_config():
"""Checks that a config using a file gives the exact same result as the default config if values are identical
to DEFAULT_EDFA_CONFIG
"""
extra_configs['copy_default_edfa_config.json'] = load_json(DATA_DIR / 'copy_default_edfa_config.json')
user_edfa = {
"type_variety": "user_defined",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"default_config_from_json": "copy_default_edfa_config.json",
"out_voa_auto": False,
"allowed_for_design": True
}
default_edfa = {
"type_variety": "default",
"type_def": "variable_gain",
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": False,
"allowed_for_design": True
}
# add the reference to
json_data = load_json(eqpt_library)
json_data['Edfa'].append(user_edfa)
json_data['Edfa'].append(default_edfa)
equipment = _equipment_from_json(json_data, extra_configs)
json_data = {
"elements": [{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "user_defined",
"operational": {
"delta_p": -3,
"gain_target": 20,
"tilt_target": 0,
"out_voa": 0
}
}, {
"uid": "Edfa2",
"type": "Edfa",
"type_variety": "default",
"operational": {
"delta_p": -3,
"gain_target": 20,
"tilt_target": 0,
"out_voa": 0
}
}],
"connections": []
}
network = network_from_json(json_data, equipment)
amp1, amp2 = [n for n in network.nodes()]
assert_allclose(amp1.params.f_min, amp2.params.f_min, rtol=1e-13)
assert_allclose(amp1.params.f_max, amp2.params.f_max, rtol=1e-13)
assert_allclose(amp1.params.gain_ripple, amp2.params.gain_ripple, rtol=1e-13)
assert_allclose(amp1.params.nf_ripple, amp2.params.nf_ripple, rtol=1e-13)
assert_allclose(amp1.params.dgt, amp2.params.dgt, rtol=1e-13)
@pytest.mark.parametrize("file", [None, {"name": "copy_default_edfa_config.json",
"path": DATA_DIR / "copy_default_edfa_config.json"}])
def test_frequency_range(file):
"""Checks that a frequency range is correctly read from the library and pre-empts DEFAULT_EDFA_CONFIG
"""
user_edfa = {
"type_variety": "user_defined",
"type_def": "variable_gain",
"f_min": 192.0e12,
"f_max": 195.9e12,
"gain_flatmax": 25,
"gain_min": 15,
"p_max": 21,
"nf_min": 6,
"nf_max": 10,
"out_voa_auto": False,
"allowed_for_design": True
}
if file:
user_edfa["default_config_from_json"] = file['name']
extra_configs[file['name']] = load_json(file['path'])
# add the reference to
json_data = load_json(eqpt_library)
json_data['Edfa'].append(user_edfa)
equipment = _equipment_from_json(json_data, extra_configs)
json_data = {
"elements": [{
"uid": "Edfa1",
"type": "Edfa",
"type_variety": "user_defined",
"operational": {
"delta_p": -3,
"gain_target": 20,
"tilt_target": 0,
"out_voa": 0
}
}],
"connections": []
}
network = network_from_json(json_data, equipment)
amp = [n for n in network.nodes()][0]
si = create_input_spectral_information(f_min=191.3e12, f_max=196.05e12, roll_off=0.15, baud_rate=64e9,
spacing=75e9, tx_osnr=None, tx_power=1e-5)
si = amp(si)
assert_allclose(amp.params.f_min, 192.0e12, rtol=1e-13)
assert_allclose(amp.params.f_max, 195.9e12, rtol=1e-13)
assert si.frequency[0] >= 192.0e12 + 75e9 / 2
assert si.frequency[-1] <= 195.9e12 - 75e9 / 2