Files
oopt-gnpy/gnpy/example-data/edfa_model/build_oa_json.py
Jan Kundrát 8eb5980ca9 distribute example data along GNPy
I would like to create a package for distribution to PIP, and this seems
like the path of least resistance.

This is, apparently, the way for shippign arbitrary data with Python
[1]. I've at least tried to make it user-firendly via adding a simple
utility which just prints out whatever that data path is.

[1] https://python-packaging.readthedocs.io/en/latest/non-code-files.html

Change-Id: I220ecad84b1d57d01e3f98f15befc700bd97c0b8
2020-06-08 18:30:36 +02:00

90 lines
2.8 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 30 12:32:00 2018
@author: jeanluc-auge
update an existing json file with all the 96ch txt files for a given amplifier type
amplifier type 'OA_type1' is hard coded but can be modified and other types added
returns an updated amplifier json file: output_json_file_name = 'edfa_config.json'
"""
import re
import sys
import json
import numpy as np
"""amplifier file names
convert a set of amplifier files + input json definiton file into a valid edfa_json_file:
nf_fit_coeff: NF 3rd order polynomial coefficients txt file
nf = f(dg)
with dg = gain_operational - gain_max
nf_ripple: NF ripple excursion txt file
gain_ripple: gain ripple txt file
dgt: dynamic gain txt file
input json file in argument (defult = 'OA.json')
the json input file should have the following fields:
{
"nf_fit_coeff": "nf_filename.txt",
"nf_ripple": "nf_ripple_filename.txt",
"gain_ripple": "DFG_filename.txt",
"dgt": "DGT_filename.txt",
}
"""
input_json_file_name = "OA.json" # default path
output_json_file_name = "default_edfa_config.json"
gain_ripple_field = "gain_ripple"
nf_ripple_field = "nf_ripple"
nf_fit_coeff = "nf_fit_coeff"
def read_file(field, file_name):
"""read and format the 96 channels txt files describing the amplifier NF and ripple
convert dfg into gain ripple by removing the mean component
"""
# with open(path + file_name,'r') as this_file:
# data = this_file.read()
# data.strip()
#data = re.sub(r"([0-9])([ ]{1,3})([0-9-+])",r"\1,\3",data)
#data = list(data.split(","))
#data = [float(x) for x in data]
data = np.loadtxt(file_name)
print(len(data), file_name)
if field == gain_ripple_field or field == nf_ripple_field:
# consider ripple excursion only to avoid redundant information
# because the max flat_gain is already given by the 'gain_flat' field in json
# remove the mean component
print(file_name, ', mean value =', data.mean(), ' is substracted')
data = data - data.mean()
data = data.tolist()
return data
def input_json(path):
"""read the json input file and add all the 96 channels txt files
create the output json file with output_json_file_name"""
with open(path, 'r') as edfa_json_file:
amp_text = edfa_json_file.read()
amp_dict = json.loads(amp_text)
for k, v in amp_dict.items():
if re.search(r'.txt$', str(v)):
amp_dict[k] = read_file(k, v)
amp_text = json.dumps(amp_dict, indent=4)
# print(amp_text)
with open(output_json_file_name, 'w') as edfa_json_file:
edfa_json_file.write(amp_text)
if __name__ == '__main__':
if len(sys.argv) == 2:
path = sys.argv[1]
else:
path = input_json_file_name
input_json(path)