mirror of
				https://github.com/Telecominfraproject/oopt-gnpy.git
				synced 2025-10-30 17:47:50 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| import json
 | |
| 
 | |
| import numpy as np
 | |
| from numpy import pi, cos, sqrt, log10
 | |
| 
 | |
| 
 | |
| def load_json(filename):
 | |
|     with open(filename, 'r') as f:
 | |
|         data = json.load(f)
 | |
|     return data
 | |
| 
 | |
| 
 | |
| def save_json(obj, filename):
 | |
|     with open(filename, 'w') as f:
 | |
|         json.dump(obj, f)
 | |
| 
 | |
| 
 | |
| def c():
 | |
|     """
 | |
|     Returns the speed of light in meters per second
 | |
|     """
 | |
|     return 299792458.0
 | |
| 
 | |
| 
 | |
| def itufs(spacing, startf=191.35, stopf=196.10):
 | |
|     """Creates an array of frequencies whose default range is
 | |
|     191.35-196.10 THz
 | |
| 
 | |
|     :param spacing: Frequency spacing in THz
 | |
|     :param starf: Start frequency in THz
 | |
|     :param stopf: Stop frequency in THz
 | |
|     :type spacing: float
 | |
|     :type startf: float
 | |
|     :type stopf: float
 | |
|     :return an array of frequnecies determined by the spacing parameter
 | |
|     :rtype: numpy.ndarray
 | |
|     """
 | |
|     return np.arange(startf, stopf + spacing / 2, spacing)
 | |
| 
 | |
| 
 | |
| def h():
 | |
|     """
 | |
|     Returns plank's constant in J*s
 | |
|     """
 | |
|     return 6.62607004e-34
 | |
| 
 | |
| 
 | |
| def lin2db(value):
 | |
|     return 10 * log10(value)
 | |
| 
 | |
| 
 | |
| def db2lin(value):
 | |
|     return 10**(value / 10)
 | |
| 
 | |
| 
 | |
| def wavelength2freq(value):
 | |
|     """ Converts wavelength units to frequeuncy units.
 | |
|     """
 | |
|     return c() / value
 | |
| 
 | |
| 
 | |
| def freq2wavelength(value):
 | |
|     """ Converts frequency units to wavelength units.
 | |
|     """
 | |
|     return c() / value
 | |
| 
 | |
| 
 | |
| def deltawl2deltaf(delta_wl, wavelength):
 | |
|     """ deltawl2deltaf(delta_wl, wavelength):
 | |
|     delta_wl is BW in wavelength units
 | |
|     wavelength is the center wl
 | |
|     units for delta_wl and wavelength must be same
 | |
| 
 | |
|     :param delta_wl: delta wavelength BW in same units as wavelength
 | |
|     :param wavelength: wavelength BW is relevant for
 | |
|     :type delta_wl: float or numpy.ndarray
 | |
|     :type wavelength: float
 | |
|     :return: The BW in frequency units
 | |
|     :rtype: float or ndarray
 | |
| 
 | |
|     """
 | |
|     f = wavelength2freq(wavelength)
 | |
|     return delta_wl * f / wavelength
 | |
| 
 | |
| 
 | |
| def deltaf2deltawl(delta_f, frequency):
 | |
|     """ deltawl2deltaf(delta_f, frequency):
 | |
|         converts delta frequency to delta wavelength
 | |
|         units for delta_wl and wavelength must be same
 | |
| 
 | |
|     :param delta_f: delta frequency in same units as frequency
 | |
|     :param frequency: frequency BW is relevant for
 | |
|     :type delta_f: float or numpy.ndarray
 | |
|     :type frequency: float
 | |
|     :return: The BW in wavelength units
 | |
|     :rtype: float or ndarray
 | |
| 
 | |
|     """
 | |
|     wl = freq2wavelength(frequency)
 | |
|     return delta_f * wl / frequency
 | |
| 
 | |
| 
 | |
| def rrc(ffs, baud_rate, alpha):
 | |
|     """ rrc(ffs, baud_rate, alpha): computes the root-raised cosine filter
 | |
|     function.
 | |
| 
 | |
|     :param ffs: A numpy array of frequencies
 | |
|     :param baud_rate: The Baud Rate of the System
 | |
|     :param alpha: The roll-off factor of the filter
 | |
|     :type ffs: numpy.ndarray
 | |
|     :type baud_rate: float
 | |
|     :type alpha: float
 | |
|     :return: hf a numpy array of the filter shape
 | |
|     :rtype: numpy.ndarray
 | |
| 
 | |
|     """
 | |
|     Ts = 1 / baud_rate
 | |
|     l_lim = (1 - alpha) / (2 * Ts)
 | |
|     r_lim = (1 + alpha) / (2 * Ts)
 | |
|     hf = np.zeros(np.shape(ffs))
 | |
|     slope_inds = np.where(
 | |
|         np.logical_and(np.abs(ffs) > l_lim, np.abs(ffs) < r_lim))
 | |
|     hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) *
 | |
|                                     (np.abs(ffs[slope_inds]) - l_lim)))
 | |
|     p_inds = np.where(np.logical_and(np.abs(ffs) > 0, np.abs(ffs) < l_lim))
 | |
|     hf[p_inds] = 1
 | |
|     return sqrt(hf)
 | 
