mirror of
https://github.com/Telecominfraproject/oopt-gnpy.git
synced 2025-10-30 17:47:50 +00:00
and add tests for explicit path Signed-off-by: EstherLerouzic <esther.lerouzic@orange.com> Change-Id: I95aaf5b56a7ea04f24153d5cb6612cd09401401c
561 lines
16 KiB
Python
561 lines
16 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
gnpy.core.utils
|
|
===============
|
|
|
|
This module contains utility functions that are used with gnpy.
|
|
"""
|
|
|
|
from csv import writer
|
|
from numpy import pi, cos, sqrt, log10, linspace, zeros, shape, where, logical_and, mean, array
|
|
from scipy import constants
|
|
from copy import deepcopy
|
|
from typing import List, Union
|
|
|
|
from gnpy.core.exceptions import ConfigurationError
|
|
|
|
|
|
def write_csv(obj, filename):
|
|
"""
|
|
Convert dictionary items to a CSV file the dictionary format:
|
|
::
|
|
|
|
{'result category 1':
|
|
[
|
|
# 1st line of results
|
|
{'header 1' : value_xxx,
|
|
'header 2' : value_yyy},
|
|
# 2nd line of results: same headers, different results
|
|
{'header 1' : value_www,
|
|
'header 2' : value_zzz}
|
|
],
|
|
'result_category 2':
|
|
[
|
|
{},{}
|
|
]
|
|
}
|
|
|
|
The generated csv file will be:
|
|
::
|
|
|
|
result_category 1
|
|
header 1 header 2
|
|
value_xxx value_yyy
|
|
value_www value_zzz
|
|
result_category 2
|
|
...
|
|
"""
|
|
with open(filename, 'w', encoding='utf-8') as f:
|
|
w = writer(f)
|
|
for data_key, data_list in obj.items():
|
|
# main header
|
|
w.writerow([data_key])
|
|
# sub headers:
|
|
headers = [_ for _ in data_list[0].keys()]
|
|
w.writerow(headers)
|
|
for data_dict in data_list:
|
|
w.writerow([_ for _ in data_dict.values()])
|
|
|
|
|
|
def arrange_frequencies(length, start, stop):
|
|
"""Create an array of frequencies
|
|
|
|
:param length: number of elements
|
|
:param start: Start frequency in THz
|
|
:param stop: Stop frequency in THz
|
|
:type length: integer
|
|
:type start: float
|
|
:type stop: float
|
|
:return: an array of frequencies determined by the spacing parameter
|
|
:rtype: numpy.ndarray
|
|
"""
|
|
return linspace(start, stop, length)
|
|
|
|
|
|
def lin2db(value):
|
|
"""Convert linear unit to logarithmic (dB)
|
|
|
|
>>> lin2db(0.001)
|
|
-30.0
|
|
>>> round(lin2db(1.0), 2)
|
|
0.0
|
|
>>> round(lin2db(1.26), 2)
|
|
1.0
|
|
>>> round(lin2db(10.0), 2)
|
|
10.0
|
|
>>> round(lin2db(100.0), 2)
|
|
20.0
|
|
"""
|
|
return 10 * log10(value)
|
|
|
|
|
|
def db2lin(value):
|
|
"""Convert logarithimic units to linear
|
|
|
|
>>> round(db2lin(10.0), 2)
|
|
10.0
|
|
>>> round(db2lin(20.0), 2)
|
|
100.0
|
|
>>> round(db2lin(1.0), 2)
|
|
1.26
|
|
>>> round(db2lin(0.0), 2)
|
|
1.0
|
|
>>> round(db2lin(-10.0), 2)
|
|
0.1
|
|
"""
|
|
return 10**(value / 10)
|
|
|
|
|
|
def watt2dbm(value):
|
|
"""Convert Watt units to dBm
|
|
|
|
>>> round(watt2dbm(0.001), 1)
|
|
0.0
|
|
>>> round(watt2dbm(0.02), 1)
|
|
13.0
|
|
"""
|
|
return lin2db(value * 1e3)
|
|
|
|
|
|
def dbm2watt(value):
|
|
"""Convert dBm units to Watt
|
|
|
|
>>> round(dbm2watt(0), 4)
|
|
0.001
|
|
>>> round(dbm2watt(-3), 4)
|
|
0.0005
|
|
>>> round(dbm2watt(13), 4)
|
|
0.02
|
|
"""
|
|
return db2lin(value) * 1e-3
|
|
|
|
|
|
def psd2powerdbm(psd_mwperghz, baudrate_baud):
|
|
"""computes power in dBm based on baudrate in bauds and psd in mW/GHz
|
|
|
|
>>> round(psd2powerdbm(0.031176, 64e9),3)
|
|
3.0
|
|
>>> round(psd2powerdbm(0.062352, 32e9),3)
|
|
3.0
|
|
>>> round(psd2powerdbm(0.015625, 64e9),3)
|
|
0.0
|
|
"""
|
|
return lin2db(baudrate_baud * psd_mwperghz * 1e-9)
|
|
|
|
|
|
def power_dbm_to_psd_mw_ghz(power_dbm, baudrate_baud):
|
|
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in dBm
|
|
|
|
>>> power_dbm_to_psd_mw_ghz(0, 64e9)
|
|
0.015625
|
|
>>> round(power_dbm_to_psd_mw_ghz(3, 64e9), 6)
|
|
0.031176
|
|
>>> round(power_dbm_to_psd_mw_ghz(3, 32e9), 6)
|
|
0.062352
|
|
"""
|
|
return db2lin(power_dbm) / (baudrate_baud * 1e-9)
|
|
|
|
|
|
def psd_mw_per_ghz(power_watt, baudrate_baud):
|
|
"""computes power spectral density in mW/GHz based on baudrate in bauds and power in W
|
|
|
|
>>> psd_mw_per_ghz(2e-3, 32e9)
|
|
0.0625
|
|
>>> psd_mw_per_ghz(1e-3, 64e9)
|
|
0.015625
|
|
>>> psd_mw_per_ghz(0.5e-3, 32e9)
|
|
0.015625
|
|
"""
|
|
return power_watt * 1e3 / (baudrate_baud * 1e-9)
|
|
|
|
|
|
def round2float(number, step):
|
|
"""Round a floating point number so that its "resolution" is not bigger than 'step'
|
|
|
|
The finest step is fixed at 0.01; smaller values are silently changed to 0.01.
|
|
|
|
>>> round2float(123.456, 1000)
|
|
0.0
|
|
>>> round2float(123.456, 100)
|
|
100.0
|
|
>>> round2float(123.456, 10)
|
|
120.0
|
|
>>> round2float(123.456, 1)
|
|
123.0
|
|
>>> round2float(123.456, 0.1)
|
|
123.5
|
|
>>> round2float(123.456, 0.01)
|
|
123.46
|
|
>>> round2float(123.456, 0.001)
|
|
123.46
|
|
>>> round2float(123.249, 0.5)
|
|
123.0
|
|
>>> round2float(123.250, 0.5)
|
|
123.0
|
|
>>> round2float(123.251, 0.5)
|
|
123.5
|
|
>>> round2float(123.300, 0.2)
|
|
123.2
|
|
>>> round2float(123.301, 0.2)
|
|
123.4
|
|
"""
|
|
step = round(step, 1)
|
|
if step >= 0.01:
|
|
number = round(number / step, 0)
|
|
number = round(number * step, 1)
|
|
else:
|
|
number = round(number, 2)
|
|
return number
|
|
|
|
|
|
wavelength2freq = constants.lambda2nu
|
|
freq2wavelength = constants.nu2lambda
|
|
|
|
|
|
def snr_sum(snr, bw, snr_added, bw_added=12.5e9):
|
|
snr_added = snr_added - lin2db(bw / bw_added)
|
|
snr = -lin2db(db2lin(-snr) + db2lin(-snr_added))
|
|
return snr
|
|
|
|
|
|
def per_label_average(values, labels):
|
|
"""computes the average per defined spectrum band, using labels
|
|
|
|
>>> labels = ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'D', 'D', 'D', 'D']
|
|
>>> values = [28.51, 28.23, 28.15, 28.17, 28.36, 28.53, 28.64, 28.68, 28.7, 28.71, 28.72, 28.73, 28.74, 28.91, 27.96, 27.85, 27.87, 28.02]
|
|
>>> per_label_average(values, labels)
|
|
{'A': 28.28, 'B': 28.68, 'C': 28.91, 'D': 27.92}
|
|
"""
|
|
|
|
label_set = sorted(set(labels))
|
|
summary = {}
|
|
for label in label_set:
|
|
vals = [val for val, lab in zip(values, labels) if lab == label]
|
|
summary[label] = round(mean(vals), 2)
|
|
return summary
|
|
|
|
|
|
def pretty_summary_print(summary):
|
|
"""Build a prettty string that shows the summary dict values per label with 2 digits"""
|
|
if len(summary) == 1:
|
|
return f'{list(summary.values())[0]:.2f}'
|
|
text = ', '.join([f'{label}: {value:.2f}' for label, value in summary.items()])
|
|
return text
|
|
|
|
|
|
def deltawl2deltaf(delta_wl, wavelength):
|
|
"""deltawl2deltaf(delta_wl, wavelength):
|
|
delta_wl is BW in wavelength units
|
|
wavelength is the center wl
|
|
units for delta_wl and wavelength must be same
|
|
|
|
:param delta_wl: delta wavelength BW in same units as wavelength
|
|
:param wavelength: wavelength BW is relevant for
|
|
:type delta_wl: float or numpy.ndarray
|
|
:type wavelength: float
|
|
:return: The BW in frequency units
|
|
:rtype: float or ndarray
|
|
|
|
"""
|
|
f = wavelength2freq(wavelength)
|
|
return delta_wl * f / wavelength
|
|
|
|
|
|
def deltaf2deltawl(delta_f, frequency):
|
|
"""convert delta frequency to delta wavelength
|
|
|
|
Units for delta_wl and wavelength must be same.
|
|
|
|
:param delta_f: delta frequency in same units as frequency
|
|
:param frequency: frequency BW is relevant for
|
|
:type delta_f: float or numpy.ndarray
|
|
:type frequency: float
|
|
:return: The BW in wavelength units
|
|
:rtype: float or ndarray
|
|
|
|
"""
|
|
wl = freq2wavelength(frequency)
|
|
return delta_f * wl / frequency
|
|
|
|
|
|
def rrc(ffs, baud_rate, alpha):
|
|
"""compute the root-raised cosine filter function
|
|
|
|
:param ffs: A numpy array of frequencies
|
|
:param baud_rate: The Baud Rate of the System
|
|
:param alpha: The roll-off factor of the filter
|
|
:type ffs: numpy.ndarray
|
|
:type baud_rate: float
|
|
:type alpha: float
|
|
:return: hf a numpy array of the filter shape
|
|
:rtype: numpy.ndarray
|
|
|
|
"""
|
|
Ts = 1 / baud_rate
|
|
l_lim = (1 - alpha) / (2 * Ts)
|
|
r_lim = (1 + alpha) / (2 * Ts)
|
|
hf = zeros(shape(ffs))
|
|
slope_inds = where(
|
|
logical_and(abs(ffs) > l_lim, abs(ffs) < r_lim))
|
|
hf[slope_inds] = 0.5 * (1 + cos((pi * Ts / alpha) *
|
|
(abs(ffs[slope_inds]) - l_lim)))
|
|
p_inds = where(logical_and(abs(ffs) > 0, abs(ffs) < l_lim))
|
|
hf[p_inds] = 1
|
|
return sqrt(hf)
|
|
|
|
|
|
def merge_amplifier_restrictions(dict1, dict2):
|
|
"""Update contents of dicts recursively
|
|
|
|
>>> d1 = {'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
|
|
>>> d2 = {'params': {'target_pch_out_db': -20}}
|
|
>>> merge_amplifier_restrictions(d1, d2)
|
|
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}, 'target_pch_out_db': -20}}
|
|
|
|
>>> d3 = {'params': {'restrictions': {'preamp_variety_list': ['foo'], 'booster_variety_list': ['bar']}}}
|
|
>>> merge_amplifier_restrictions(d1, d3)
|
|
{'params': {'restrictions': {'preamp_variety_list': [], 'booster_variety_list': []}}}
|
|
"""
|
|
|
|
copy_dict1 = dict1.copy()
|
|
for key in dict2:
|
|
if key in dict1:
|
|
if isinstance(dict1[key], dict):
|
|
copy_dict1[key] = merge_amplifier_restrictions(copy_dict1[key], dict2[key])
|
|
else:
|
|
copy_dict1[key] = dict2[key]
|
|
return copy_dict1
|
|
|
|
|
|
def silent_remove(this_list, elem):
|
|
"""Remove matching elements from a list without raising ValueError
|
|
|
|
>>> li = [0, 1]
|
|
>>> li = silent_remove(li, 1)
|
|
>>> li
|
|
[0]
|
|
>>> li = silent_remove(li, 1)
|
|
>>> li
|
|
[0]
|
|
"""
|
|
|
|
try:
|
|
this_list.remove(elem)
|
|
except ValueError:
|
|
pass
|
|
return this_list
|
|
|
|
|
|
def automatic_nch(f_min, f_max, spacing):
|
|
"""How many channels are available in the spectrum
|
|
|
|
:param f_min Lowest frequenecy [Hz]
|
|
:param f_max Highest frequency [Hz]
|
|
:param spacing Channel width [Hz]
|
|
:return Number of uniform channels
|
|
|
|
>>> automatic_nch(191.325e12, 196.125e12, 50e9)
|
|
96
|
|
>>> automatic_nch(193.475e12, 193.525e12, 50e9)
|
|
1
|
|
"""
|
|
return int((f_max - f_min) // spacing)
|
|
|
|
|
|
def automatic_fmax(f_min, spacing, nch):
|
|
"""Find the high-frequenecy boundary of a spectrum
|
|
|
|
:param f_min Start of the spectrum (lowest frequency edge) [Hz]
|
|
:param spacing Grid/channel spacing [Hz]
|
|
:param nch Number of channels
|
|
:return End of the spectrum (highest frequency) [Hz]
|
|
|
|
>>> automatic_fmax(191.325e12, 50e9, 96)
|
|
196125000000000.0
|
|
"""
|
|
return f_min + spacing * nch
|
|
|
|
|
|
def convert_length(value, units):
|
|
"""Convert length into basic SI units
|
|
|
|
>>> convert_length(1, 'km')
|
|
1000.0
|
|
>>> convert_length(2.0, 'km')
|
|
2000.0
|
|
>>> convert_length(123, 'm')
|
|
123.0
|
|
>>> convert_length(123.0, 'm')
|
|
123.0
|
|
>>> convert_length(42.1, 'km')
|
|
42100.0
|
|
>>> convert_length(666, 'yards')
|
|
Traceback (most recent call last):
|
|
...
|
|
gnpy.core.exceptions.ConfigurationError: Cannot convert length in "yards" into meters
|
|
"""
|
|
if units == 'm':
|
|
return value * 1e0
|
|
elif units == 'km':
|
|
return value * 1e3
|
|
else:
|
|
raise ConfigurationError(f'Cannot convert length in "{units}" into meters')
|
|
|
|
|
|
def replace_none(dictionary):
|
|
""" Replaces None with inf values in a frequency slots dict
|
|
|
|
>>> replace_none({'N': 3, 'M': None})
|
|
{'N': 3, 'M': inf}
|
|
|
|
"""
|
|
for key, val in dictionary.items():
|
|
if val is None:
|
|
dictionary[key] = float('inf')
|
|
if val == float('inf'):
|
|
dictionary[key] = None
|
|
return dictionary
|
|
|
|
|
|
def order_slots(slots):
|
|
""" Order frequency slots from larger slots to smaller ones up to None
|
|
|
|
>>> l = [{'N': 3, 'M': None}, {'N': 2, 'M': 1}, {'N': None, 'M': None},{'N': 7, 'M': 2},{'N': None, 'M': 1} , {'N': None, 'M': 0}]
|
|
>>> order_slots(l)
|
|
([7, 2, None, None, 3, None], [2, 1, 1, 0, None, None], [3, 1, 4, 5, 0, 2])
|
|
"""
|
|
slots_list = deepcopy(slots)
|
|
slots_list = [replace_none(e) for e in slots_list]
|
|
for i, e in enumerate(slots_list):
|
|
e['i'] = i
|
|
slots_list = sorted(slots_list, key=lambda x: (-x['M'], x['N']) if x['M'] != float('inf') else (x['M'], x['N']))
|
|
slots_list = [replace_none(e) for e in slots_list]
|
|
return [e['N'] for e in slots_list], [e['M'] for e in slots_list], [e['i'] for e in slots_list]
|
|
|
|
|
|
def restore_order(elements, order):
|
|
""" Use order to re-order the element of the list, and ignore None values
|
|
|
|
>>> restore_order([7, 2, None, None, 3, None], [3, 1, 4, 5, 0, 2])
|
|
[3, 2, 7]
|
|
"""
|
|
return [elements[i[0]] for i in sorted(enumerate(order), key=lambda x:x[1]) if elements[i[0]] is not None]
|
|
|
|
|
|
def unique_ordered(elements):
|
|
"""
|
|
"""
|
|
unique_elements = []
|
|
for element in elements:
|
|
if element not in unique_elements:
|
|
unique_elements.append(element)
|
|
return unique_elements
|
|
|
|
|
|
def calculate_absolute_min_or_zero(x: array) -> array:
|
|
"""Calculates the element-wise absolute minimum between the x and zero.
|
|
|
|
Parameters:
|
|
x (array): The first input array.
|
|
|
|
Returns:
|
|
array: The element-wise absolute minimum between x and zero.
|
|
|
|
Example:
|
|
>>> x = array([-1, 2, -3])
|
|
>>> calculate_absolute_min_or_zero(x)
|
|
array([1., 0., 3.])
|
|
"""
|
|
return (abs(x) - x) / 2
|
|
|
|
|
|
def nice_column_str(data: List[List[str]], max_length: int = 30, padding: int = 1) -> str:
|
|
"""data is a list of rows, creates strings with nice alignment per colum and padding with spaces
|
|
letf justified
|
|
|
|
>>> table_data = [['aaa', 'b', 'c'], ['aaaaaaaa', 'bbb', 'c'], ['a', 'bbbbbbbbbb', 'c']]
|
|
>>> print(nice_column_str(table_data))
|
|
aaa b c
|
|
aaaaaaaa bbb c
|
|
a bbbbbbbbbb c
|
|
"""
|
|
# transpose data to determine size of columns
|
|
transposed_data = list(map(list, zip(*data)))
|
|
column_width = [max(len(word) for word in column) + padding for column in transposed_data]
|
|
nice_str = []
|
|
for row in data:
|
|
column = ''.join(word[0:max_length].ljust(min(width, max_length)) for width, word in zip(column_width, row))
|
|
nice_str.append(f'{column}')
|
|
return '\n'.join(nice_str)
|
|
|
|
|
|
def find_common_range(amp_bands: List[List[dict]], default_band_f_min: float, default_band_f_max: float) \
|
|
-> List[dict]:
|
|
"""Find the common frequency range of bands
|
|
If there are no amplifiers in the path, then use default band
|
|
|
|
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
|
|
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
|
|
[{'f_min': 186e12, 'f_max': 193e12}]]
|
|
>>> find_common_range(amp_bands, 190e12, 195e12)
|
|
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}, {'f_min': 192000000000000.0, 'f_max': 193000000000000.0}]
|
|
>>> amp_bands = [[{'f_min': 191e12, 'f_max' : 195e12}, {'f_min': 186e12, 'f_max' : 190e12} ], \
|
|
[{'f_min': 185e12, 'f_max' : 189e12}, {'f_min': 192e12, 'f_max' : 196e12}], \
|
|
[{'f_min': 186e12, 'f_max': 192e12}]]
|
|
>>> find_common_range(amp_bands, 190e12, 195e12)
|
|
[{'f_min': 186000000000000.0, 'f_max': 189000000000000.0}]
|
|
|
|
"""
|
|
_amp_bands = [sorted(amp, key=lambda x: x['f_min']) for amp in amp_bands]
|
|
_temp = []
|
|
# remove None bands
|
|
for amp in _amp_bands:
|
|
is_band = True
|
|
for band in amp:
|
|
if not (is_band and band['f_min'] and band['f_max']):
|
|
is_band = False
|
|
if is_band:
|
|
_temp.append(amp)
|
|
|
|
# remove duplicate
|
|
unique_amp_bands = []
|
|
for amp in _temp:
|
|
if amp not in unique_amp_bands:
|
|
unique_amp_bands.append(amp)
|
|
if unique_amp_bands:
|
|
common_range = unique_amp_bands[0]
|
|
else:
|
|
if default_band_f_min is None or default_band_f_max is None:
|
|
return []
|
|
common_range = [{'f_min': default_band_f_min, 'f_max': default_band_f_max}]
|
|
for bands in unique_amp_bands:
|
|
common_range = [{'f_min': max(first['f_min'], second['f_min']), 'f_max': min(first['f_max'], second['f_max'])}
|
|
for first in common_range for second in bands
|
|
if max(first['f_min'], second['f_min']) < min(first['f_max'], second['f_max'])]
|
|
return sorted(common_range, key=lambda x: x['f_min'])
|
|
|
|
|
|
def transform_data(data: str) -> Union[List[int], None]:
|
|
"""Transforms a float into an list of one integer or a string separated by "|" into a list of integers.
|
|
|
|
Args:
|
|
data (float or str): The data to transform.
|
|
|
|
Returns:
|
|
list of int: The transformed data as a list of integers.
|
|
|
|
Examples:
|
|
>>> transform_data(5.0)
|
|
[5]
|
|
|
|
>>> transform_data('1 | 2 | 3')
|
|
[1, 2, 3]
|
|
"""
|
|
if isinstance(data, float):
|
|
return [int(data)]
|
|
if isinstance(data, str):
|
|
return [int(x) for x in data.split(' | ')]
|
|
return None
|