Files
oopt-gnpy/gnpy/core/parameters.py
AndreaDAmico edf1eec072 Nonlinear coefficient scaling along frequency
The nonlinear coefficient can be expressed at the reference frequency and will be scaled in frequency using the scaling rule of the effective area

Change-Id: Id103b227472702776bda17ab0a2a120ecfbf7473
2023-11-17 08:53:58 +01:00

397 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gnpy.core.parameters
====================
This module contains all parameters to configure standard network elements.
"""
from collections import namedtuple
from scipy.constants import c, pi
from numpy import asarray, array, exp, sqrt, log, outer, ones, squeeze, append, flip
from gnpy.core.utils import convert_length
from gnpy.core.exceptions import ParametersError
class Parameters:
def asdict(self):
class_dict = self.__class__.__dict__
instance_dict = self.__dict__
new_dict = {}
for key in class_dict:
if isinstance(class_dict[key], property):
new_dict[key] = instance_dict['_' + key]
return new_dict
class PumpParams(Parameters):
def __init__(self, power, frequency, propagation_direction):
self.power = power
self.frequency = frequency
self.propagation_direction = propagation_direction.lower()
class RamanParams(Parameters):
def __init__(self, flag=False, result_spatial_resolution=10e3, solver_spatial_resolution=50):
"""Simulation parameters used within the Raman Solver
:params flag: boolean for enabling/disable the evaluation of the Raman power profile in frequency and position
:params result_spatial_resolution: spatial resolution of the evaluated Raman power profile
:params solver_spatial_resolution: spatial step for the iterative solution of the first order ode
"""
self.flag = flag
self.result_spatial_resolution = result_spatial_resolution # [m]
self.solver_spatial_resolution = solver_spatial_resolution # [m]
class NLIParams(Parameters):
def __init__(self, method='gn_model_analytic', dispersion_tolerance=1, phase_shift_tolerance=0.1,
computed_channels=None):
"""Simulation parameters used within the Nli Solver
:params method: formula for NLI calculation
:params dispersion_tolerance: tuning parameter for ggn model solution
:params phase_shift_tolerance: tuning parameter for ggn model solution
:params computed_channels: the NLI is evaluated for these channels and extrapolated for the others
"""
self.method = method.lower()
self.dispersion_tolerance = dispersion_tolerance
self.phase_shift_tolerance = phase_shift_tolerance
self.computed_channels = computed_channels
class SimParams(Parameters):
_shared_dict = {'nli_params': NLIParams(), 'raman_params': RamanParams()}
@classmethod
def set_params(cls, sim_params):
cls._shared_dict['nli_params'] = NLIParams(**sim_params.get('nli_params', {}))
cls._shared_dict['raman_params'] = RamanParams(**sim_params.get('raman_params', {}))
@property
def nli_params(self):
return self._shared_dict['nli_params']
@property
def raman_params(self):
return self._shared_dict['raman_params']
class RoadmParams(Parameters):
def __init__(self, **kwargs):
self.target_pch_out_db = kwargs.get('target_pch_out_db')
self.target_psd_out_mWperGHz = kwargs.get('target_psd_out_mWperGHz')
self.target_out_mWperSlotWidth = kwargs.get('target_out_mWperSlotWidth')
equalisation_type = ['target_pch_out_db', 'target_psd_out_mWperGHz', 'target_out_mWperSlotWidth']
temp = [kwargs.get(k) is not None for k in equalisation_type]
if sum(temp) > 1:
raise ParametersError('ROADM config contains more than one equalisation type.'
+ 'Please choose only one', kwargs)
self.per_degree_pch_out_db = kwargs.get('per_degree_pch_out_db', {})
self.per_degree_pch_psd = kwargs.get('per_degree_psd_out_mWperGHz', {})
self.per_degree_pch_psw = kwargs.get('per_degree_psd_out_mWperSlotWidth', {})
try:
self.add_drop_osnr = kwargs['add_drop_osnr']
self.pmd = kwargs['pmd']
self.pdl = kwargs['pdl']
self.restrictions = kwargs['restrictions']
except KeyError as e:
raise ParametersError(f'ROADM configurations must include {e}. Configuration: {kwargs}')
class FusedParams(Parameters):
def __init__(self, **kwargs):
self.loss = kwargs['loss'] if 'loss' in kwargs else 1
DEFAULT_RAMAN_COEFFICIENT = {
# SSMF Raman coefficient profile normalized with respect to the effective area overlap (g0 * A_eff(f_probe, f_pump))
'g0': array(
[0.00000000e+00, 1.12351610e-05, 3.47838074e-05, 5.79356636e-05, 8.06921680e-05, 9.79845709e-05, 1.10454361e-04,
1.18735302e-04, 1.24736889e-04, 1.30110053e-04, 1.41001273e-04, 1.46383247e-04, 1.57011792e-04, 1.70765865e-04,
1.88408911e-04, 2.05914127e-04, 2.24074028e-04, 2.47508283e-04, 2.77729174e-04, 3.08044243e-04, 3.34764439e-04,
3.56481704e-04, 3.77127256e-04, 3.96269124e-04, 4.10955175e-04, 4.18718761e-04, 4.19511263e-04, 4.17025384e-04,
4.13565369e-04, 4.07726048e-04, 3.83671291e-04, 4.08564283e-04, 3.69571936e-04, 3.14442090e-04, 2.16074535e-04,
1.23097823e-04, 8.95457457e-05, 7.52470400e-05, 7.19806145e-05, 8.87961158e-05, 9.30812065e-05, 9.37058268e-05,
8.45719619e-05, 6.90585286e-05, 4.50407159e-05, 3.36521245e-05, 3.02292475e-05, 2.69376939e-05, 2.60020897e-05,
2.82958958e-05, 3.08667558e-05, 3.66024657e-05, 5.80610307e-05, 6.54797937e-05, 6.25022715e-05, 5.37806442e-05,
3.94996621e-05, 2.68120644e-05, 2.33038554e-05, 1.79140757e-05, 1.52472424e-05, 1.32707565e-05, 1.06541760e-05,
9.84649374e-06, 9.13999627e-06, 9.08971012e-06, 1.04227525e-05, 1.50419271e-05, 1.77838232e-05, 2.15810815e-05,
2.03744008e-05, 1.81939341e-05, 1.31862121e-05, 9.65352116e-06, 8.62698322e-06, 9.18688016e-06, 1.01737784e-05,
1.08017817e-05, 1.03903588e-05, 9.30040333e-06, 8.30809173e-06, 6.90650401e-06, 5.52238029e-06, 3.90648708e-06,
2.22908227e-06, 1.55796177e-06, 9.77218716e-07, 3.23477236e-07, 1.60602454e-07, 7.97306386e-08]
), # [m/W]
# Note the non-uniform spacing of this range; this is required for properly capturing the Raman peak shape.
'frequency_offset': array([
0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5,
12.,
12.5, 12.75, 13., 13.25, 13.5, 14., 14.5, 14.75, 15., 15.5, 16., 16.5, 17., 17.5, 18., 18.25, 18.5, 18.75, 19.,
19.5, 20., 20.5, 21., 21.5, 22., 22.5, 23., 23.5, 24., 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29.,
29.5,
30., 30.5, 31., 31.5, 32., 32.5, 33., 33.5, 34., 34.5, 35., 35.5, 36., 36.5, 37., 37.5, 38., 38.5, 39., 39.5,
40.,
40.5, 41., 41.5, 42.]
) * 1e12, # [Hz]
# Raman profile reference frequency
'reference_frequency': 206184634112792 # [Hz] (1454 nm)}
}
class RamanGainCoefficient(namedtuple('RamanGainCoefficient', 'normalized_gamma_raman frequency_offset')):
""" Raman Gain Coefficient Parameters
Based on:
Andrea DAmico, Bruno Correia, Elliot London, Emanuele Virgillito, Giacomo Borraccini, Antonio Napoli,
and Vittorio Curri, "Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network,"
J. Lightwave Technol. 40, 3499-3511 (2022)
Section III.D
"""
class FiberParams(Parameters):
def __init__(self, **kwargs):
try:
self._length = convert_length(kwargs['length'], kwargs['length_units'])
# fixed attenuator for padding
self._att_in = kwargs.get('att_in', 0)
# if not defined in the network json connector loss in/out
# the None value will be updated in network.py[build_network]
# with default values from eqpt_config.json[Spans]
self._con_in = kwargs.get('con_in')
self._con_out = kwargs.get('con_out')
# Reference frequency (unique for all parameters: beta2, beta3, gamma, effective_area)
if 'ref_wavelength' in kwargs:
self._ref_wavelength = kwargs['ref_wavelength']
self._ref_frequency = c / self._ref_wavelength
elif 'ref_frequency' in kwargs:
self._ref_frequency = kwargs['ref_frequency']
self._ref_wavelength = c / self._ref_frequency
else:
self._ref_wavelength = 1550e-9 # conventional central C band wavelength [m]
self._ref_frequency = c / self._ref_wavelength
# Chromatic Dispersion
self._dispersion = kwargs['dispersion'] # s/m/m
self._dispersion_slope = \
kwargs.get('dispersion_slope', -2 * self._dispersion / self.ref_wavelength) # s/m/m/m
self._beta2 = -(self.ref_wavelength ** 2) * self.dispersion / (2 * pi * c) # 1/(m * Hz^2)
# Eq. (3.23) in Abramczyk, Halina. "Dispersion phenomena in optical fibers." Virtual European University
# on Lasers. Available online: http://mitr.p.lodz.pl/evu/lectures/Abramczyk3.pdf
# (accessed on 25 March 2018) (2005).
self._beta3 = ((self.dispersion_slope - (4*pi*c/self.ref_wavelength**3) * self.beta2) /
(2*pi*c/self.ref_wavelength**2)**2)
# Effective Area and Nonlinear Coefficient
self._effective_area = kwargs.get('effective_area') # m^2
self._n1 = 1.468
self._core_radius = 4.2e-6 # m
self._n2 = 2.6e-20 # m^2/W
if self._effective_area is not None:
default_gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area)
self._gamma = kwargs.get('gamma', default_gamma) # 1/W/m
elif 'gamma' in kwargs:
self._gamma = kwargs['gamma'] # 1/W/m
self._effective_area = 2 * pi * self._n2 / (self._ref_wavelength * self._gamma) # m^2
else:
self._effective_area = 83e-12 # m^2
self._gamma = 2 * pi * self._n2 / (self._ref_wavelength * self._effective_area) # 1/W/m
self._contrast = 0.5 * (c / (2 * pi * self._ref_frequency * self._core_radius * self._n1) * exp(
pi * self._core_radius ** 2 / self._effective_area)) ** 2
# Raman Gain Coefficient
raman_coefficient = kwargs.get('raman_coefficient', DEFAULT_RAMAN_COEFFICIENT)
self._g0 = asarray(raman_coefficient['g0'])
raman_reference_frequency = raman_coefficient['reference_frequency']
frequency_offset = asarray(raman_coefficient['frequency_offset'])
stokes_wave = raman_reference_frequency - frequency_offset
gamma_raman = self._g0 * self.effective_area_overlap(stokes_wave, raman_reference_frequency)
normalized_gamma_raman = gamma_raman / raman_reference_frequency # 1 / m / W / Hz
self._raman_reference_frequency = raman_reference_frequency
# Raman gain coefficient array of the frequency offset constructed such that positive frequency values
# represent a positive power transfer from higher frequency and vice versa
frequency_offset = append(-flip(frequency_offset[1:]), frequency_offset)
normalized_gamma_raman = append(- flip(normalized_gamma_raman[1:]), normalized_gamma_raman)
self._raman_coefficient = RamanGainCoefficient(normalized_gamma_raman, frequency_offset)
# Polarization Mode Dispersion
self._pmd_coef = kwargs['pmd_coef'] # s/sqrt(m)
# Loss Coefficient
if isinstance(kwargs['loss_coef'], dict):
self._loss_coef = asarray(kwargs['loss_coef']['value']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(kwargs['loss_coef']['frequency']) # Hz
else:
self._loss_coef = asarray(kwargs['loss_coef']) * 1e-3 # lineic loss dB/m
self._f_loss_ref = asarray(self._ref_frequency) # Hz
# Lumped Losses
self._lumped_losses = kwargs['lumped_losses'] if 'lumped_losses' in kwargs else array([])
self._latency = self._length / (c / self._n1) # s
except KeyError as e:
raise ParametersError(f'Fiber configurations json must include {e}. Configuration: {kwargs}')
@property
def length(self):
return self._length
@length.setter
def length(self, length):
"""length must be in m"""
self._length = length
@property
def att_in(self):
return self._att_in
@att_in.setter
def att_in(self, att_in):
self._att_in = att_in
@property
def con_in(self):
return self._con_in
@con_in.setter
def con_in(self, con_in):
self._con_in = con_in
@property
def con_out(self):
return self._con_out
@property
def lumped_losses(self):
return self._lumped_losses
@con_out.setter
def con_out(self, con_out):
self._con_out = con_out
@property
def dispersion(self):
return self._dispersion
@property
def dispersion_slope(self):
return self._dispersion_slope
@property
def gamma(self):
return self._gamma
def effective_area_scaling(self, frequency):
V = 2 * pi * frequency / c * self._core_radius * self._n1 * sqrt(2 * self._contrast)
w = self._core_radius / sqrt(log(V))
return asarray(pi * w ** 2)
def effective_area_overlap(self, frequency_stokes_wave, frequency_pump):
effective_area_stokes_wave = self.effective_area_scaling(frequency_stokes_wave)
effective_area_pump = self.effective_area_scaling(frequency_pump)
return squeeze(outer(effective_area_stokes_wave, ones(effective_area_pump.size)) + outer(
ones(effective_area_stokes_wave.size), effective_area_pump)) / 2
def gamma_scaling(self, frequency):
return asarray(2 * pi * self._n2 * frequency / (c * self.effective_area_scaling(frequency)))
@property
def pmd_coef(self):
return self._pmd_coef
@property
def ref_wavelength(self):
return self._ref_wavelength
@property
def ref_frequency(self):
return self._ref_frequency
@property
def beta2(self):
return self._beta2
@property
def beta3(self):
return self._beta3
@property
def loss_coef(self):
return self._loss_coef
@property
def f_loss_ref(self):
return self._f_loss_ref
@property
def raman_coefficient(self):
return self._raman_coefficient
@property
def latency(self):
return self._latency
def asdict(self):
dictionary = super().asdict()
dictionary['loss_coef'] = self.loss_coef * 1e3
dictionary['length_units'] = 'm'
if len(self.lumped_losses) == 0:
dictionary.pop('lumped_losses')
if not self.raman_coefficient:
dictionary.pop('raman_coefficient')
else:
raman_frequency_offset = \
self.raman_coefficient.frequency_offset[self.raman_coefficient.frequency_offset >= 0]
dictionary['raman_coefficient'] = {'g0': self._g0.tolist(),
'frequency_offset': raman_frequency_offset.tolist(),
'reference_frequency': self._raman_reference_frequency}
return dictionary
class EdfaParams:
def __init__(self, **params):
self.update_params(params)
if params == {}:
self.type_variety = ''
self.type_def = ''
# self.gain_flatmax = 0
# self.gain_min = 0
# self.p_max = 0
# self.nf_model = None
# self.nf_fit_coeff = None
# self.nf_ripple = None
# self.dgt = None
# self.gain_ripple = None
# self.out_voa_auto = False
# self.allowed_for_design = None
def update_params(self, kwargs):
for k, v in kwargs.items():
setattr(self, k, self.update_params(**v) if isinstance(v, dict) else v)
class EdfaOperational:
default_values = {
'gain_target': None,
'delta_p': None,
'out_voa': None,
'tilt_target': 0
}
def __init__(self, **operational):
self.update_attr(operational)
def update_attr(self, kwargs):
clean_kwargs = {k: v for k, v in kwargs.items() if v != ''}
for k, v in self.default_values.items():
setattr(self, k, clean_kwargs.get(k, v))
def __repr__(self):
return (f'{type(self).__name__}('
f'gain_target={self.gain_target!r}, '
f'tilt_target={self.tilt_target!r})')