Files
oopt-gnpy/gnpy/core/network.py
Jan Kundrát 648039521e reorganization: move all JSON processing into an extra module
We agreed that `gnpy.core` should only contain stuff for propagating
wavelengths. Conceptually, JSON parsing and even instantiating these
network elements from data obtained through JSON is *not* something that
is on the same level -- and this will become more important when we move
into YANG format in future.

Also, instead of former `gnpy.core.equipment.common`, use
`gnpy.tools.json_io._JsonThing`. It is not really an awesome name :),
but I think it sucks less than a thing called "common" which would be no
really longer any "common" in that new file.

Change-Id: Ifd85ea4423d418c14c8fae3d5054c5cb5638d283
2020-05-23 20:44:47 +02:00

485 lines
20 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
gnpy.core.network
=================
Working with networks which consist of network elements
'''
from scipy.interpolate import interp1d
from operator import attrgetter
from gnpy.core import ansi_escapes, elements
from gnpy.core.exceptions import ConfigurationError, NetworkTopologyError
from gnpy.core.utils import round2float, convert_length
from collections import namedtuple
def edfa_nf(gain_target, variety_type, equipment):
amp_params = equipment['Edfa'][variety_type]
amp = elements.Edfa(
uid='calc_NF',
params=amp_params.__dict__,
operational={
'gain_target': gain_target,
'tilt_target': 0
}
)
amp.pin_db = 0
amp.nch = 88
return amp._calc_nf(True)
def select_edfa(raman_allowed, gain_target, power_target, equipment, uid, restrictions=None):
"""amplifer selection algorithm
@Orange Jean-Luc Augé
"""
Edfa_list = namedtuple('Edfa_list', 'variety power gain_min nf')
TARGET_EXTENDED_GAIN = equipment['Span']['default'].target_extended_gain
# for roadm restriction only: create a dict including not allowed for design amps
# because main use case is to have specific radm amp which are not allowed for ILA
# with the auto design
edfa_dict = {name: amp for (name, amp) in equipment['Edfa'].items()
if restrictions is None or name in restrictions}
pin = power_target - gain_target
# create 2 list of available amplifiers with relevant attributes for their selection
# edfa list with:
# extended gain min allowance of 3dB: could be parametrized, but a bit complex
# extended gain max allowance TARGET_EXTENDED_GAIN is coming from eqpt_config.json
# power attribut include power AND gain limitations
edfa_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+ edfa.gain_flatmax
+ TARGET_EXTENDED_GAIN,
edfa.p_max
)
- power_target,
gain_min=gain_target + 3
- edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment))
for edfa_variety, edfa in edfa_dict.items()
if ((edfa.allowed_for_design or restrictions is not None) and not edfa.raman)]
# consider a Raman list because of different gain_min requirement:
# do not allow extended gain min for Raman
raman_list = [Edfa_list(
variety=edfa_variety,
power=min(
pin
+ edfa.gain_flatmax
+ TARGET_EXTENDED_GAIN,
edfa.p_max
)
- power_target,
gain_min=gain_target
- edfa.gain_min,
nf=edfa_nf(gain_target, edfa_variety, equipment))
for edfa_variety, edfa in edfa_dict.items()
if (edfa.allowed_for_design and edfa.raman)] \
if raman_allowed else []
# merge raman and edfa lists
amp_list = edfa_list + raman_list
# filter on min gain limitation:
acceptable_gain_min_list = [x for x in amp_list if x.gain_min > 0]
if len(acceptable_gain_min_list) < 1:
# do not take this empty list into account for the rest of the code
# but issue a warning to the user and do not consider Raman
# Raman below min gain should not be allowed because i is meant to be a design requirement
# and raman padding at the amplifier input is impossible!
if len(edfa_list) < 1:
raise ConfigurationError(f'auto_design could not find any amplifier \
to satisfy min gain requirement in node {uid} \
please increase span fiber padding')
else:
# TODO: convert to logging
print(
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain in node {uid} is below all available amplifiers min gain: \
amplifier input padding will be assumed, consider increase span fiber padding instead'
)
acceptable_gain_min_list = edfa_list
# filter on gain+power limitation:
# this list checks both the gain and the power requirement
# because of the way .power is calculated in the list
acceptable_power_list = [x for x in acceptable_gain_min_list if x.power > 0]
if len(acceptable_power_list) < 1:
# no amplifier satisfies the required power, so pick the highest power(s):
power_max = max(acceptable_gain_min_list, key=attrgetter('power')).power
# check and pick if other amplifiers may have a similar gain/power
# allow a 0.3dB power range
# this allows to chose an amplifier with a better NF subsequentely
acceptable_power_list = [x for x in acceptable_gain_min_list
if x.power - power_max > -0.3]
# gain and power requirements are resolved,
# =>chose the amp with the best NF among the acceptable ones:
selected_edfa = min(acceptable_power_list, key=attrgetter('nf')) # filter on NF
# check what are the gain and power limitations of this amp
power_reduction = round(min(selected_edfa.power, 0), 2)
if power_reduction < -0.5:
print(
f'{ansi_escapes.red}WARNING:{ansi_escapes.reset} target gain and power in node {uid}\n \
is beyond all available amplifiers capabilities and/or extended_gain_range:\n\
a power reduction of {power_reduction} is applied\n'
)
return selected_edfa.variety, power_reduction
def target_power(network, node, equipment): # get_fiber_dp
SPAN_LOSS_REF = 20
POWER_SLOPE = 0.3
dp_range = list(equipment['Span']['default'].delta_power_range_db)
node_loss = span_loss(network, node)
try:
dp = round2float((node_loss - SPAN_LOSS_REF) * POWER_SLOPE, dp_range[2])
dp = max(dp_range[0], dp)
dp = min(dp_range[1], dp)
except KeyError:
raise ConfigurationError(f'invalid delta_power_range_db definition in eqpt_config[Span]'
f'delta_power_range_db: [lower_bound, upper_bound, step]')
if isinstance(node, elements.Roadm):
dp = 0
return dp
def prev_node_generator(network, node):
"""fused spans interest:
iterate over all predecessors while they are Fused or Fiber type"""
try:
prev_node = next(n for n in network.predecessors(node))
except StopIteration:
raise NetworkTopologyError(f'Node {node.uid} is not properly connected, please check network topology')
# yield and re-iterate
if isinstance(prev_node, elements.Fused) or isinstance(node, elements.Fused):
yield prev_node
yield from prev_node_generator(network, prev_node)
else:
StopIteration
def next_node_generator(network, node):
"""fused spans interest:
iterate over all successors while they are Fused or Fiber type"""
try:
next_node = next(n for n in network.successors(node))
except StopIteration:
raise NetworkTopologyError('Node {node.uid} is not properly connected, please check network topology')
# yield and re-iterate
if isinstance(next_node, elements.Fused) or isinstance(node, elements.Fused):
yield next_node
yield from next_node_generator(network, next_node)
else:
StopIteration
def span_loss(network, node):
"""Fused span interest:
return the total span loss of all the fibers spliced by a Fused node"""
loss = node.loss if node.passive else 0
try:
prev_node = next(n for n in network.predecessors(node))
if isinstance(prev_node, elements.Fused):
loss += sum(n.loss for n in prev_node_generator(network, node))
except StopIteration:
pass
try:
next_node = next(n for n in network.successors(node))
if isinstance(next_node, elements.Fused):
loss += sum(n.loss for n in next_node_generator(network, node))
except StopIteration:
pass
return loss
def find_first_node(network, node):
"""Fused node interest:
returns the 1st node at the origin of a succession of fused nodes
(aka no amp in between)"""
this_node = node
for this_node in prev_node_generator(network, node):
pass
return this_node
def find_last_node(network, node):
"""Fused node interest:
returns the last node in a succession of fused nodes
(aka no amp in between)"""
this_node = node
for this_node in next_node_generator(network, node):
pass
return this_node
def set_amplifier_voa(amp, power_target, power_mode):
VOA_MARGIN = 1 # do not maximize the VOA optimization
if amp.out_voa is None:
if power_mode:
voa = min(amp.params.p_max - power_target,
amp.params.gain_flatmax - amp.effective_gain)
voa = max(round2float(max(voa, 0), 0.5) - VOA_MARGIN, 0) if amp.params.out_voa_auto else 0
amp.delta_p = amp.delta_p + voa
amp.effective_gain = amp.effective_gain + voa
else:
voa = 0 # no output voa optimization in gain mode
amp.out_voa = voa
def set_egress_amplifier(network, roadm, equipment, pref_total_db):
power_mode = equipment['Span']['default'].power_mode
next_oms = (n for n in network.successors(roadm) if not isinstance(n, elements.Transceiver))
for oms in next_oms:
# go through all the OMS departing from the Roadm
node = roadm
prev_node = roadm
next_node = oms
# if isinstance(next_node, elements.Fused): #support ROADM wo egress amp for metro applications
# node = find_last_node(next_node)
# next_node = next(n for n in network.successors(node))
# next_node = find_last_node(next_node)
prev_dp = getattr(node.params, 'target_pch_out_db', 0)
dp = prev_dp
prev_voa = 0
voa = 0
while True:
# go through all nodes in the OMS (loop until next Roadm instance)
if isinstance(node, elements.Edfa):
node_loss = span_loss(network, prev_node)
voa = node.out_voa if node.out_voa else 0
if node.delta_p is None:
dp = target_power(network, next_node, equipment)
else:
dp = node.delta_p
gain_from_dp = node_loss + dp - prev_dp + prev_voa
if node.effective_gain is None or power_mode:
gain_target = gain_from_dp
else: # gain mode with effective_gain
gain_target = node.effective_gain
dp = prev_dp - node_loss + gain_target
power_target = pref_total_db + dp
raman_allowed = False
if isinstance(prev_node, elements.Fiber):
max_fiber_lineic_loss_for_raman = \
equipment['Span']['default'].max_fiber_lineic_loss_for_raman
raman_allowed = prev_node.params.loss_coef < max_fiber_lineic_loss_for_raman
# implementation of restrictions on roadm boosters
if isinstance(prev_node, elements.Roadm):
if prev_node.restrictions['booster_variety_list']:
restrictions = prev_node.restrictions['booster_variety_list']
else:
restrictions = None
elif isinstance(next_node, elements.Roadm):
# implementation of restrictions on roadm preamp
if next_node.restrictions['preamp_variety_list']:
restrictions = next_node.restrictions['preamp_variety_list']
else:
restrictions = None
else:
restrictions = None
if node.params.type_variety == '':
edfa_variety, power_reduction = select_edfa(raman_allowed, gain_target, power_target, equipment, node.uid, restrictions)
extra_params = equipment['Edfa'][edfa_variety]
node.params.update_params(extra_params.__dict__)
dp += power_reduction
gain_target += power_reduction
elif node.params.raman and not raman_allowed:
print(f'{ansi_escapes.red}WARNING{ansi_escapes.reset}: raman is used in node {node.uid}\n but fiber lineic loss is above threshold\n')
node.delta_p = dp if power_mode else None
node.effective_gain = gain_target
set_amplifier_voa(node, power_target, power_mode)
if isinstance(next_node, elements.Roadm) or isinstance(next_node, elements.Transceiver):
break
prev_dp = dp
prev_voa = voa
prev_node = node
node = next_node
# print(f'{node.uid}')
next_node = next(n for n in network.successors(node))
def add_egress_amplifier(network, node):
next_nodes = [n for n in network.successors(node)
if not (isinstance(n, elements.Transceiver) or isinstance(n, elements.Fused) or isinstance(n, elements.Edfa))]
# no amplification for fused spans or TRX
for i, next_node in enumerate(next_nodes):
network.remove_edge(node, next_node)
amp = elements.Edfa(
uid=f'Edfa{i}_{node.uid}',
params={},
metadata={
'location': {
'latitude': (node.lat * 2 + next_node.lat * 2) / 4,
'longitude': (node.lng * 2 + next_node.lng * 2) / 4,
'city': node.loc.city,
'region': node.loc.region,
}
},
operational={
'gain_target': None,
'tilt_target': 0,
})
network.add_node(amp)
if isinstance(node, elements.Fiber):
edgeweight = node.params.length
else:
edgeweight = 0.01
network.add_edge(node, amp, weight=edgeweight)
network.add_edge(amp, next_node, weight=0.01)
def calculate_new_length(fiber_length, bounds, target_length):
if fiber_length < bounds.stop:
return fiber_length, 1
n_spans = int(fiber_length // target_length)
length1 = fiber_length / (n_spans + 1)
delta1 = target_length - length1
result1 = (length1, n_spans + 1)
length2 = fiber_length / n_spans
delta2 = length2 - target_length
result2 = (length2, n_spans)
if (bounds.start <= length1 <= bounds.stop) and not(bounds.start <= length2 <= bounds.stop):
result = result1
elif (bounds.start <= length2 <= bounds.stop) and not(bounds.start <= length1 <= bounds.stop):
result = result2
else:
result = result1 if delta1 < delta2 else result2
return result
def split_fiber(network, fiber, bounds, target_length, equipment):
new_length, n_spans = calculate_new_length(fiber.params.length, bounds, target_length)
if n_spans == 1:
return
try:
next_node = next(network.successors(fiber))
prev_node = next(network.predecessors(fiber))
except StopIteration:
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
network.remove_node(fiber)
fiber.params.length = new_length
f = interp1d([prev_node.lng, next_node.lng], [prev_node.lat, next_node.lat])
xpos = [prev_node.lng + (next_node.lng - prev_node.lng) * (n + 1) / (n_spans + 1) for n in range(n_spans)]
ypos = f(xpos)
for span, lng, lat in zip(range(n_spans), xpos, ypos):
new_span = elements.Fiber(uid=f'{fiber.uid}_({span+1}/{n_spans})',
type_variety=fiber.type_variety,
metadata={
'location': {
'latitude': lat,
'longitude': lng,
'city': fiber.loc.city,
'region': fiber.loc.region,
}
},
params=fiber.params.asdict())
if isinstance(prev_node, elements.Fiber):
edgeweight = prev_node.params.length
else:
edgeweight = 0.01
network.add_edge(prev_node, new_span, weight=edgeweight)
prev_node = new_span
if isinstance(prev_node, elements.Fiber):
edgeweight = prev_node.params.length
else:
edgeweight = 0.01
network.add_edge(prev_node, next_node, weight=edgeweight)
def add_connector_loss(network, fibers, default_con_in, default_con_out, EOL):
for fiber in fibers:
if fiber.params.con_in is None:
fiber.params.con_in = default_con_in
if fiber.params.con_out is None:
fiber.params.con_out = default_con_out
next_node = next(n for n in network.successors(fiber))
if not isinstance(next_node, elements.Fused):
fiber.params.con_out += EOL
def add_fiber_padding(network, fibers, padding):
"""last_fibers = (fiber for n in network.nodes()
if not (isinstance(n, elements.Fiber) or isinstance(n, elements.Fused))
for fiber in network.predecessors(n)
if isinstance(fiber, elements.Fiber))"""
for fiber in fibers:
this_span_loss = span_loss(network, fiber)
try:
next_node = next(network.successors(fiber))
except StopIteration:
raise NetworkTopologyError(f'Fiber {fiber.uid} is not properly connected, please check network topology')
if this_span_loss < padding and not (isinstance(next_node, elements.Fused)):
# add a padding att_in at the input of the 1st fiber:
# address the case when several fibers are spliced together
first_fiber = find_first_node(network, fiber)
# in order to support no booster , fused might be placed
# just after a roadm: need to check that first_fiber is really a fiber
if isinstance(first_fiber, elements.Fiber):
if first_fiber.params.att_in is None:
first_fiber.params.att_in = padding - this_span_loss
else:
first_fiber.params.att_in = first_fiber.params.att_in + padding - this_span_loss
def build_network(network, equipment, pref_ch_db, pref_total_db):
default_span_data = equipment['Span']['default']
max_length = int(convert_length(default_span_data.max_length, default_span_data.length_units))
min_length = max(int(default_span_data.padding / 0.2 * 1e3), 50_000)
bounds = range(min_length, max_length)
target_length = max(min_length, 90_000)
default_con_in = default_span_data.con_in
default_con_out = default_span_data.con_out
padding = default_span_data.padding
# set roadm loss for gain_mode before to build network
fibers = [f for f in network.nodes() if isinstance(f, elements.Fiber)]
add_connector_loss(network, fibers, default_con_in, default_con_out, default_span_data.EOL)
add_fiber_padding(network, fibers, padding)
# don't group split fiber and add amp in the same loop
# =>for code clarity (at the expense of speed):
for fiber in fibers:
split_fiber(network, fiber, bounds, target_length, equipment)
amplified_nodes = [n for n in network.nodes() if isinstance(n, elements.Fiber) or isinstance(n, elements.Roadm)]
for node in amplified_nodes:
add_egress_amplifier(network, node)
roadms = [r for r in network.nodes() if isinstance(r, elements.Roadm)]
for roadm in roadms:
set_egress_amplifier(network, roadm, equipment, pref_total_db)
# support older json input topology wo Roadms:
if len(roadms) == 0:
trx = [t for t in network.nodes() if isinstance(t, elements.Transceiver)]
for t in trx:
set_egress_amplifier(network, t, equipment, pref_total_db)