mirror of
				https://github.com/Telecominfraproject/oopt-gnpy.git
				synced 2025-10-31 01:57:54 +00:00 
			
		
		
		
	 ff6d81b749
			
		
	
	ff6d81b749
	
	
	
		
			
			separate in the code: * add egress amplifier * vs setting the amplifier parameters => prepare improvments in select_edfa and target_power code regroup all network optimization operations in network.py (remove from transmission_main) Signed-off-by: Jean-Luc Auge <jeanluc.auge@orange.com>
		
			
				
	
	
		
			643 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			643 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| '''
 | |
| gnpy.core.elements
 | |
| ==================
 | |
| 
 | |
| This module contains standard network elements.
 | |
| 
 | |
| A network element is a Python callable. It takes a .info.SpectralInformation
 | |
| object and returns a copy with appropriate fields affected. This structure
 | |
| represents spectral information that is "propogated" by this network element.
 | |
| Network elements must have only a local "view" of the network and propogate
 | |
| SpectralInformation using only this information. They should be independent and
 | |
| self-contained.
 | |
| 
 | |
| Network elements MUST implement two attributes .uid and .name representing a
 | |
| unique identifier and a printable name.
 | |
| '''
 | |
| 
 | |
| from numpy import abs, arange, arcsinh, array, exp
 | |
| from numpy import interp, log10, mean, pi, polyfit, polyval, sum
 | |
| from scipy.constants import c, h
 | |
| from collections import namedtuple
 | |
| 
 | |
| from gnpy.core.node import Node
 | |
| from gnpy.core.units import UNITS
 | |
| from gnpy.core.utils import lin2db, db2lin, itufs
 | |
| 
 | |
| class Transceiver(Node):
 | |
|     def __init__(self, *args, **kwargs):
 | |
|         super().__init__(*args, **kwargs)
 | |
|         self.osnr_ase_01nm = None
 | |
|         self.osnr_ase = None
 | |
|         self.osnr_nli = None
 | |
|         self.snr = None
 | |
|         self.passive = False
 | |
| 
 | |
|     def _calc_snr(self, spectral_info):
 | |
|         ase = [c.power.ase for c in spectral_info.carriers]
 | |
|         nli = [c.power.nli for c in spectral_info.carriers]
 | |
|         if min(ase) > 1e-20:
 | |
|             self.osnr_ase = [lin2db(c.power.signal/c.power.ase)
 | |
|                              for c in spectral_info.carriers]
 | |
|             ratio_01nm = [lin2db(12.5e9/c.baud_rate)
 | |
|                           for c in spectral_info.carriers]
 | |
|             self.osnr_ase_01nm = [ase - ratio for ase, ratio
 | |
|                                   in zip(self.osnr_ase, ratio_01nm)]
 | |
|         if min(nli) > 1e-20:
 | |
|             self.osnr_nli = [lin2db(c.power.signal/c.power.nli)
 | |
|                              for c in spectral_info.carriers]
 | |
|             self.snr = [lin2db(c.power.signal/(c.power.nli+c.power.ase))
 | |
|                         for c in spectral_info.carriers]
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}('
 | |
|                 f'uid={self.uid!r}, '
 | |
|                 f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
 | |
|                 f'osnr_ase={self.osnr_ase!r}, '
 | |
|                 f'osnr_nli={self.osnr_nli!r}, '
 | |
|                 f'snr={self.snr!r})')
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.snr is None or self.osnr_ase is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
| 
 | |
|         snr = round(mean(self.snr),2)
 | |
|         osnr_ase = round(mean(self.osnr_ase),2)
 | |
|         osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
 | |
| 
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
| 
 | |
|                           f'  OSNR ASE (1nm):        {osnr_ase_01nm:.2f}',
 | |
|                           f'  OSNR ASE (signal bw):  {osnr_ase:.2f}',
 | |
|                           f'  SNR total (signal bw): {snr:.2f}'])
 | |
| 
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         self._calc_snr(spectral_info)
 | |
|         return spectral_info
 | |
| 
 | |
| RoadmParams = namedtuple('RoadmParams', 'loss')
 | |
| 
 | |
| class Roadm(Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if params is None:
 | |
|             # default loss value if not mentioned in loaded network json
 | |
|             params = {'loss':None}
 | |
|         super().__init__(*args, params=RoadmParams(**params), **kwargs)
 | |
|         self.loss = self.params.loss
 | |
|         self.pch_out = None
 | |
|         self.passive = True
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  loss (dB):     {self.loss:.2f}',
 | |
|                           f'  pch out (dBm): {self.pch_out!r}'])
 | |
| 
 | |
|     def propagate(self, *carriers):
 | |
|         attenuation = db2lin(self.loss)
 | |
| 
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace(signal=pwr.signal/attenuation,
 | |
|                                nonlinear_interference=pwr.nli/attenuation,
 | |
|                                amplified_spontaneous_emission=pwr.ase/attenuation)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         self.pch_out = round(pref.pi - self.loss, 2)
 | |
|         return pref._replace(p_span0=pref.p0, p_spani=pref.pi - self.loss)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         carriers = tuple(self.propagate(*spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         return spectral_info.update(carriers=carriers, pref=pref)
 | |
| 
 | |
| FusedParams = namedtuple('FusedParams', 'loss')
 | |
| 
 | |
| class Fused(Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if params is None:
 | |
|             # default loss value if not mentioned in loaded network json
 | |
|             params = {'loss':1}
 | |
|         super().__init__(*args, params=FusedParams(**params), **kwargs)
 | |
|         self.loss = self.params.loss
 | |
|         self.passive = True
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}',
 | |
|                           f'  loss (dB): {self.loss:.2f}'])
 | |
| 
 | |
|     def propagate(self, *carriers):
 | |
|         attenuation = db2lin(self.loss)
 | |
| 
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace(signal=pwr.signal/attenuation,
 | |
|                                nonlinear_interference=pwr.nli/attenuation,
 | |
|                                amplified_spontaneous_emission=pwr.ase/attenuation)
 | |
|             yield carrier._replace(power=pwr)
 | |
|     
 | |
|     def update_pref(self, pref):
 | |
|         return pref._replace(p_span0=pref.p0, p_spani=pref.pi - self.loss)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         carriers = tuple(self.propagate(*spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         print('pi',pref.pi)
 | |
|         return spectral_info.update(carriers=carriers, pref=pref)
 | |
| 
 | |
| FiberParams = namedtuple('FiberParams', 'type_variety length loss_coef length_units \
 | |
|                                          att_in con_in con_out dispersion gamma')
 | |
| 
 | |
| class Fiber(Node):
 | |
|     def __init__(self, *args, params=None, **kwargs):
 | |
|         if params is None:
 | |
|             params = {}
 | |
|         if 'con_in' not in params:
 | |
|             # if not defined in the network json connector loss in/out
 | |
|             # the None value will be updated in network.py[build_network] 
 | |
|             # with default values from eqpt_config.json[Spans]
 | |
|             params['con_in'] = None
 | |
|             params['con_out'] = None
 | |
|         if 'att_in' not in params:
 | |
|             #fixed attenuator for padding
 | |
|             params['att_in'] = 0
 | |
| 
 | |
|         super().__init__(*args, params=FiberParams(**params), **kwargs)
 | |
|         self.type_variety = self.params.type_variety
 | |
|         self.length = self.params.length * UNITS[self.params.length_units] # in m
 | |
|         self.loss_coef = self.params.loss_coef * 1e-3 # lineic loss dB/m
 | |
|         self.lin_loss_coef = self.params.loss_coef / (20 * log10(exp(1)))
 | |
|         self.att_in = self.params.att_in
 | |
|         self.con_in = self.params.con_in
 | |
|         self.con_out = self.params.con_out
 | |
|         self.dispersion = self.params.dispersion  # s/m/m
 | |
|         self.gamma = self.params.gamma # 1/W/m     
 | |
|         self.pch_out = None  
 | |
|         # TODO|jla: discuss factor 2 in the linear lineic attenuation
 | |
| 
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'{type(self).__name__}(uid={self.uid!r}, length={round(self.length*1e-3,1)!r}km, loss={round(self.loss,1)!r}dB)'
 | |
| 
 | |
|     def __str__(self):
 | |
|         return '\n'.join([f'{type(self).__name__}          {self.uid}',
 | |
|                           f'  type_variety:                {self.type_variety}',
 | |
|                           f'  length (km):                 {round(self.length*1e-3):.2f}',
 | |
|                           f'  pad att_in (dB):             {self.att_in:.2f}',
 | |
|                           f'  total loss (dB):             {self.loss:.2f}',
 | |
|                           f'  (includes conn loss (dB) in: {self.con_in:.2f} out: {self.con_out:.2f})',
 | |
|                           f'  (conn loss out includes EOL margin defined in eqpt_config.json)'])
 | |
| 
 | |
|     @property
 | |
|     def fiber_loss(self):
 | |
|         # dB fiber loss, not including padding attenuator
 | |
|         return self.loss_coef * self.length + self.con_in + self.con_out
 | |
| 
 | |
|     @property
 | |
|     def loss(self):
 | |
|         #total loss incluiding padding att_in: useful for polymorphism with roadm loss
 | |
|         return self.loss_coef * self.length + self.con_in + self.con_out + self.att_in
 | |
|     
 | |
|     @property
 | |
|     def passive(self):
 | |
|         return True   
 | |
| 
 | |
|     @property
 | |
|     def lin_attenuation(self):
 | |
|         return db2lin(self.length * self.loss_coef)
 | |
| 
 | |
|     @property
 | |
|     def effective_length(self):
 | |
|         _, alpha = self.dbkm_2_lin()
 | |
|         leff = (1 - exp(-2 * alpha * self.length)) / (2 * alpha)
 | |
|         return leff
 | |
| 
 | |
|     @property
 | |
|     def asymptotic_length(self):
 | |
|         _, alpha = self.dbkm_2_lin()
 | |
|         aleff = 1 / (2 * alpha)
 | |
|         return aleff
 | |
| 
 | |
|     def beta2(self, ref_wavelength=None):
 | |
|         """ Returns beta2 from dispersion parameter.
 | |
|         Dispersion is entered in ps/nm/km.
 | |
|         Disperion can be a numpy array or a single value.  If a
 | |
|         value ref_wavelength is not entered 1550e-9m will be assumed.
 | |
|         ref_wavelength can be a numpy array.
 | |
|         """
 | |
|         # TODO|jla: discuss beta2 as method or attribute
 | |
|         wl = 1550e-9 if ref_wavelength is None else ref_wavelength
 | |
|         D = abs(self.dispersion)
 | |
|         b2 = (wl ** 2) * D / (2 * pi * c)  # 10^21 scales [ps^2/km]
 | |
|         return b2 # s/Hz/m
 | |
| 
 | |
|     def dbkm_2_lin(self):
 | |
|         """ calculates the linear loss coefficient
 | |
|         """
 | |
|         # alpha_pcoef is linear loss coefficient in dB/km^-1
 | |
|         # alpha_acoef is linear loss field amplitude coefficient in m^-1
 | |
|         alpha_pcoef = self.loss_coef
 | |
|         alpha_acoef = alpha_pcoef / (2 * 10 * log10(exp(1)))
 | |
|         return alpha_pcoef, alpha_acoef
 | |
| 
 | |
|     def _psi(self, carrier, interfering_carrier):
 | |
|         """ Calculates eq. 123 from	arXiv:1209.0394.
 | |
|         """
 | |
|         if carrier.num_chan == interfering_carrier.num_chan: # SCI
 | |
|             psi = arcsinh(0.5 * pi**2 * self.asymptotic_length
 | |
|                               * abs(self.beta2()) * carrier.baud_rate**2)
 | |
|         else: # XCI
 | |
|             delta_f = carrier.freq - interfering_carrier.freq
 | |
|             psi = arcsinh(pi**2 * self.asymptotic_length * abs(self.beta2())
 | |
|                                 * carrier.baud_rate * (delta_f + 0.5 * interfering_carrier.baud_rate))
 | |
|             psi -= arcsinh(pi**2 * self.asymptotic_length * abs(self.beta2())
 | |
|                                  * carrier.baud_rate * (delta_f - 0.5 * interfering_carrier.baud_rate))
 | |
| 
 | |
|         return psi
 | |
| 
 | |
|     def _gn_analytic(self, carrier, *carriers):
 | |
|         """ Computes the nonlinear interference power on a single carrier.
 | |
|         The method uses eq. 120 from arXiv:1209.0394.
 | |
|         :param carrier: the signal under analysis
 | |
|         :param carriers: the full WDM comb
 | |
|         :return: carrier_nli: the amount of nonlinear interference in W on the under analysis
 | |
|         """
 | |
| 
 | |
|         g_nli = 0
 | |
|         for interfering_carrier in carriers:
 | |
|             psi = self._psi(carrier, interfering_carrier)
 | |
|             g_nli += (interfering_carrier.power.signal/interfering_carrier.baud_rate)**2 \
 | |
|                      * (carrier.power.signal/carrier.baud_rate) * psi
 | |
| 
 | |
|         g_nli *= (16 / 27) * (self.gamma * self.effective_length)**2 \
 | |
|                  / (2 * pi * abs(self.beta2()) * self.asymptotic_length)
 | |
| 
 | |
|         carrier_nli = carrier.baud_rate * g_nli
 | |
|         return carrier_nli
 | |
| 
 | |
|     def propagate(self, *carriers):
 | |
| 
 | |
|         # apply connector_att_in on all carriers before computing gn analytics  premiere partie pas bonne
 | |
|         attenuation = db2lin(self.con_in + self.att_in)
 | |
| 
 | |
|         chan = []
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             pwr = pwr._replace(signal=pwr.signal/attenuation,
 | |
|                                nonlinear_interference=pwr.nli/attenuation,
 | |
|                                amplified_spontaneous_emission=pwr.ase/attenuation)
 | |
|             carrier = carrier._replace(power=pwr)
 | |
|             chan.append(carrier)
 | |
| 
 | |
|         carriers = tuple(f for f in chan)
 | |
| 
 | |
|         # propagate in the fiber and apply attenuation out
 | |
|         attenuation = db2lin(self.con_out)
 | |
|         for carrier in carriers:
 | |
|             pwr = carrier.power
 | |
|             carrier_nli = self._gn_analytic(carrier, *carriers)
 | |
|             pwr = pwr._replace(signal=pwr.signal/self.lin_attenuation/attenuation,
 | |
|                                nonlinear_interference=(pwr.nli+carrier_nli)/self.lin_attenuation/attenuation,
 | |
|                                amplified_spontaneous_emission=pwr.ase/self.lin_attenuation/attenuation)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         self.pch_out = round(pref.pi - self.loss, 2)
 | |
|         return pref._replace(p_span0=pref.p0, p_spani=pref.pi - self.loss)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         carriers = tuple(self.propagate(*spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         return spectral_info.update(carriers=carriers, pref=pref)
 | |
| 
 | |
| class EdfaParams:
 | |
|     def __init__(self, **params):
 | |
|         self.update_params(params)
 | |
|         if params == {}:
 | |
|             self.type_variety = ''
 | |
|             self.type_def = ''
 | |
|             self.gain_flatmax = 0
 | |
|             self.gain_min = 0
 | |
|             self.p_max = 0
 | |
|             self.nf_model = None
 | |
|             self.nf_fit_coeff = None
 | |
|             self.nf_ripple = None
 | |
|             self.dgt = None
 | |
|             self.gain_ripple = None
 | |
|             self.allowed_for_design = None
 | |
| 
 | |
|     def update_params(self, kwargs):
 | |
|         for k,v in kwargs.items() :
 | |
|             setattr(self, k, update_params(**v)
 | |
|                 if isinstance(v, dict) else v)
 | |
| 
 | |
| class EdfaOperational:
 | |
|     def __init__(self, gain_target, tilt_target):
 | |
|         self.gain_target = gain_target
 | |
|         self.tilt_target = tilt_target
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}('
 | |
|                 f'gain_target={self.gain_target!r}, '
 | |
|                 f'tilt_target={self.tilt_target!r})')
 | |
| 
 | |
| class Edfa(Node):
 | |
|     def __init__(self, *args, params={}, operational={}, **kwargs):
 | |
|         #TBC is this useful? put in comment for now:
 | |
|         #if params is None:
 | |
|         #    params = {}
 | |
|         #if operational is None:
 | |
|         #    operational = {}
 | |
|         super().__init__(
 | |
|             *args,
 | |
|             params=EdfaParams(**params),
 | |
|             operational=EdfaOperational(**operational),
 | |
|             **kwargs
 | |
|         )
 | |
|         self.interpol_dgt = None # interpolated dynamic gain tilt
 | |
|         self.interpol_gain_ripple = None # gain ripple
 | |
|         self.interpol_nf_ripple = None # nf_ripple
 | |
|         self.channel_freq = None # SI channel frequencies
 | |
|         # nf, gprofile, pin and pout attributes are set by interpol_params
 | |
|         self.nf = None # dB edfa nf at operational.gain_target
 | |
|         self.gprofile = None
 | |
|         self.pin_db = None
 | |
|         self.pout_db = None
 | |
|         self.dp_db = None #delta P with Pref (power swwep) in power mode
 | |
|         self.target_pch_db = None
 | |
|         self.effective_pch_db = None
 | |
|         self.passive = False
 | |
|         self.effective_gain = self.operational.gain_target
 | |
|         self.att_in = None
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return (f'{type(self).__name__}(uid={self.uid!r}, '
 | |
|                 f'type_variety={self.params.type_variety!r}'
 | |
|                 f'interpol_dgt={self.interpol_dgt!r}, '
 | |
|                 f'interpol_gain_ripple={self.interpol_gain_ripple!r}, '
 | |
|                 f'interpol_nf_ripple={self.interpol_nf_ripple!r}, '
 | |
|                 f'channel_freq={self.channel_freq!r}, '
 | |
|                 f'nf={self.nf!r}, '
 | |
|                 f'gprofile={self.gprofile!r}, '
 | |
|                 f'pin_db={self.pin_db!r}, '
 | |
|                 f'pout_db={self.pout_db!r})')
 | |
| 
 | |
|     def __str__(self):
 | |
|         if self.pin_db is None or self.pout_db is None:
 | |
|             return f'{type(self).__name__} {self.uid}'
 | |
|         nf = mean(self.nf)
 | |
|         return '\n'.join([f'{type(self).__name__} {self.uid}', 
 | |
|                           f'  type_variety:           {self.params.type_variety}',
 | |
|                           f'  target gain (dB):       {self.operational.gain_target:.2f}',
 | |
|                           f'  effective gain(dB):     {self.effective_gain:.2f}',
 | |
|                           f'  noise figure (dB):      {nf:.2f}',
 | |
|                           f'  including att_in',
 | |
|                           f'  pad att_in (dB):        {self.att_in:.2f}',
 | |
|                           f'  Power In (dBm):         {self.pin_db:.2f}',
 | |
|                           f'  Power Out (dBm):        {self.pout_db:.2f}',
 | |
|                           f'  Delta_P (dB):           {self.dp_db!r}',
 | |
|                           f'  target pch (dBm):       {self.target_pch_db!r}',
 | |
|                           f'  effective pch (dBm):    {self.effective_pch_db!r}'])
 | |
| 
 | |
|     def interpol_params(self, frequencies, pin, baud_rates, pref):
 | |
|         """interpolate SI channel frequencies with the edfa dgt and gain_ripple frquencies from json
 | |
|         set the edfa class __init__ None parameters :
 | |
|                 self.channel_freq, self.nf, self.interpol_dgt and self.interpol_gain_ripple
 | |
|         """
 | |
|         # TODO|jla: read amplifier actual frequencies from additional params in json
 | |
|         amplifier_freq = itufs(0.05) * 1e12 # Hz
 | |
|         self.channel_freq = frequencies
 | |
|         self.interpol_dgt = interp(self.channel_freq, amplifier_freq, self.params.dgt)
 | |
|         self.interpol_gain_ripple = interp(self.channel_freq, amplifier_freq, self.params.gain_ripple)
 | |
|         self.interpol_nf_ripple =interp(self.channel_freq, amplifier_freq, self.params.nf_ripple)
 | |
| 
 | |
|         self.pin_db = lin2db(sum(pin*1e3))
 | |
|         """check power saturation and correct target_gain accordingly:"""
 | |
| 
 | |
|         if self.dp_db is not None:
 | |
|             self.target_pch_db = round(self.dp_db + pref.p0, 2)
 | |
|             self.effective_gain = self.target_pch_db - pref.pi
 | |
|         else:
 | |
|             self.effective_gain = self.operational.gain_target
 | |
|         self.effective_gain = min(self.effective_gain, self.params.p_max - self.pin_db)
 | |
|         self.effective_pch_db = round(pref.pi + self.effective_gain, 2)
 | |
| 
 | |
|         self.nf = self._calc_nf()
 | |
|         self.gprofile = self._gain_profile(pin)
 | |
| 
 | |
|         pout = (pin + self.noise_profile(baud_rates))*db2lin(self.gprofile)
 | |
|         self.pout_db = lin2db(sum(pout*1e3))
 | |
|         # ase & nli are only calculated in signal bandwidth
 | |
|         #    pout_db is not the absolute full output power (negligible if sufficient channels)
 | |
| 
 | |
|     def _calc_nf(self):
 | |
|         """nf calculation based on 2 models: self.params.nf_model.enabled from json import:
 | |
|         True => 2 stages amp modelling based on precalculated nf1, nf2 and delta_p in build_OA_json
 | |
|         False => polynomial fit based on self.params.nf_fit_coeff"""
 | |
|         # TODO|jla: TBD alarm rising or input VOA padding in case
 | |
|         # gain_min > gain_target TBD:
 | |
|         pad = max(self.params.gain_min - self.effective_gain, 0)
 | |
|         self.att_in = pad
 | |
|         gain_target = self.effective_gain + pad
 | |
|         dg = max(self.params.gain_flatmax - gain_target, 0)
 | |
|         if self.params.type_def == 'variable_gain':
 | |
|             g1a = gain_target - self.params.nf_model.delta_p - dg
 | |
|             nf_avg = lin2db(db2lin(self.params.nf_model.nf1) + db2lin(self.params.nf_model.nf2)/db2lin(g1a))
 | |
|         elif self.params.type_def == 'fixed_gain':
 | |
|             nf_avg = self.params.nf_model.nf0            
 | |
|         else:
 | |
|             nf_avg = polyval(self.params.nf_fit_coeff, -dg)
 | |
|         return self.interpol_nf_ripple + nf_avg + pad # input VOA = 1 for 1 NF degradation
 | |
| 
 | |
|     def noise_profile(self, df):
 | |
|         """ noise_profile(bw) computes amplifier ase (W) in signal bw (Hz)
 | |
|         noise is calculated at amplifier input
 | |
| 
 | |
|         :bw: signal bandwidth = baud rate in Hz
 | |
|         :type bw: float
 | |
| 
 | |
|         :return: the asepower in W in the signal bandwidth bw for 96 channels
 | |
|         :return type: numpy array of float
 | |
| 
 | |
|         ASE POWER USING PER CHANNEL GAIN PROFILE
 | |
|         INPUTS:
 | |
|         NF_dB - Noise figure in dB, vector of length number of channels or
 | |
|                 spectral slices
 | |
|         G_dB  - Actual gain calculated for the EDFA, vector of length number of
 | |
|                 channels or spectral slices
 | |
|         ffs     - Center frequency grid of the channels or spectral slices in
 | |
|                 THz, vector of length number of channels or spectral slices
 | |
|         dF    - width of each channel or spectral slice in THz,
 | |
|                 vector of length number of channels or spectral slices
 | |
|         OUTPUT:
 | |
|             ase_dBm - ase in dBm per channel or spectral slice
 | |
|         NOTE: the output is the total ASE in the channel or spectral slice. For
 | |
|         50GHz channels the ASE BW is effectively 0.4nm. To get to noise power
 | |
|         in 0.1nm, subtract 6dB.
 | |
| 
 | |
|         ONSR is usually quoted as channel power divided by
 | |
|         the ASE power in 0.1nm RBW, regardless of the width of the actual
 | |
|         channel.  This is a historical convention from the days when optical
 | |
|         signals were much smaller (155Mbps, 2.5Gbps, ... 10Gbps) than the
 | |
|         resolution of the OSAs that were used to measure spectral power which
 | |
|         were set to 0.1nm resolution for convenience.  Moving forward into
 | |
|         flexible grid and high baud rate signals, it may be convenient to begin
 | |
|         quoting power spectral density in the same BW for both signal and ASE,
 | |
|         e.g. 12.5GHz."""
 | |
| 
 | |
|         ase = h * df * self.channel_freq * db2lin(self.nf) # W
 | |
|         return ase # in W at amplifier input
 | |
| 
 | |
|     def _gain_profile(self, pin, err_tolerance=1.0e-11, simple_opt=True):
 | |
|         """
 | |
|         Pin : input power / channel in W
 | |
| 
 | |
|         :param gain_ripple: design flat gain
 | |
|         :param dgt: design gain tilt
 | |
|         :param Pin: total input power in W
 | |
|         :param gp: Average gain setpoint in dB units
 | |
|         :param gtp: gain tilt setting
 | |
|         :type gain_ripple: numpy.ndarray
 | |
|         :type dgt: numpy.ndarray
 | |
|         :type Pin: numpy.ndarray
 | |
|         :type gp: float
 | |
|         :type gtp: float
 | |
|         :return: gain profile in dBm
 | |
|         :rtype: numpy.ndarray
 | |
| 
 | |
|         AMPLIFICATION USING INPUT PROFILE
 | |
|         INPUTS:
 | |
|             gain_ripple - vector of length number of channels or spectral slices
 | |
|             DGT - vector of length number of channels or spectral slices
 | |
|             Pin - input powers vector of length number of channels or
 | |
|             spectral slices
 | |
|             Gp  - provisioned gain length 1
 | |
|             GTp - provisioned tilt length 1
 | |
| 
 | |
|         OUTPUT:
 | |
|             amp gain per channel or spectral slice
 | |
|         NOTE: there is no checking done for violations of the total output
 | |
|             power capability of the amp.
 | |
|         EDIT OF PREVIOUS NOTE: power violation now added in interpol_params
 | |
|             Ported from Matlab version written by David Boerges at Ciena.
 | |
|         Based on:
 | |
|             R. di Muro, "The Er3+ fiber gain coefficient derived from a dynamic
 | |
|             gain
 | |
|             tilt technique", Journal of Lightwave Technology, Vol. 18, Iss. 3,
 | |
|             Pp. 343-347, 2000.
 | |
|         """
 | |
| 
 | |
|         # TODO|jla: check what param should be used (currently length(dgt))
 | |
|         nb_channel = arange(len(self.interpol_dgt))
 | |
| 
 | |
|         # TODO|jla: find a way to use these or lose them. Primarily we should have
 | |
|         # a way to determine if exceeding the gain or output power of the amp
 | |
|         tot_in_power_db = lin2db(sum(pin*1e3)) # Pin in W
 | |
| 
 | |
|         # linear fit to get the
 | |
|         p = polyfit(nb_channel, self.interpol_dgt, 1)
 | |
|         dgt_slope = p[0]
 | |
| 
 | |
|         # Calculate the target slope - currently assumes equal spaced channels
 | |
|         # TODO|jla: support arbitrary channel spacing
 | |
|         targ_slope = self.operational.tilt_target / (len(nb_channel) - 1)
 | |
| 
 | |
|         # first estimate of DGT scaling
 | |
|         if abs(dgt_slope) > 0.001: # check for zero value due to flat dgt
 | |
|             dgts1 = targ_slope / dgt_slope
 | |
|         else:
 | |
|             dgts1 = 0
 | |
| 
 | |
|         # when simple_opt is true, make 2 attempts to compute gain and
 | |
|         # the internal voa value. This is currently here to provide direct
 | |
|         # comparison with original Matlab code. Will be removed.
 | |
|         # TODO|jla: replace with loop
 | |
| 
 | |
|         if not simple_opt:
 | |
|             return
 | |
| 
 | |
|         # first estimate of Er gain & VOA loss
 | |
|         g1st = array(self.interpol_gain_ripple) + self.params.gain_flatmax \
 | |
|                + array(self.interpol_dgt) * dgts1
 | |
|         voa = lin2db(mean(db2lin(g1st))) - self.effective_gain
 | |
| 
 | |
|         # second estimate of amp ch gain using the channel input profile
 | |
|         g2nd = g1st - voa
 | |
| 
 | |
|         pout_db = lin2db(sum(pin*1e3*db2lin(g2nd)))
 | |
|         dgts2 = self.effective_gain - (pout_db - tot_in_power_db)
 | |
| 
 | |
|         # center estimate of amp ch gain
 | |
|         xcent = dgts2
 | |
|         gcent = g1st - voa + array(self.interpol_dgt) * xcent
 | |
|         pout_db = lin2db(sum(pin*1e3*db2lin(gcent)))
 | |
|         gavg_cent = pout_db - tot_in_power_db
 | |
| 
 | |
|         # Lower estimate of amp ch gain
 | |
|         deltax = max(g1st) - min(g1st)
 | |
|         # if no ripple deltax = 0 and xlow = xcent: div 0
 | |
|         # TODO|jla: add check for flat gain response
 | |
|         if abs(deltax) <= 0.05: # not enough ripple to consider calculation
 | |
|             return g1st - voa
 | |
| 
 | |
|         xlow = dgts2 - deltax
 | |
|         glow = g1st - voa + array(self.interpol_dgt) * xlow
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(glow)))
 | |
|         gavg_low = pout_db - tot_in_power_db
 | |
| 
 | |
|         # upper gain estimate
 | |
|         xhigh = dgts2 + deltax
 | |
|         ghigh = g1st - voa + array(self.interpol_dgt) * xhigh
 | |
|         pout_db = lin2db(sum(pin * 1e3 * db2lin(ghigh)))
 | |
|         gavg_high = pout_db - tot_in_power_db
 | |
| 
 | |
|         # compute slope
 | |
|         slope1 = (gavg_low - gavg_cent) / (xlow - xcent)
 | |
|         slope2 = (gavg_cent - gavg_high) / (xcent - xhigh)
 | |
| 
 | |
|         if abs(self.effective_gain - gavg_cent) <= err_tolerance:
 | |
|             dgts3 = xcent
 | |
|         elif self.effective_gain < gavg_cent:
 | |
|             dgts3 = xcent - (gavg_cent - self.effective_gain) / slope1
 | |
|         else:
 | |
|             dgts3 = xcent + (-gavg_cent + self.effective_gain) / slope2
 | |
| 
 | |
|         return g1st - voa + array(self.interpol_dgt) * dgts3
 | |
| 
 | |
|     def propagate(self, pref, *carriers):
 | |
|         """add ase noise to the propagating carriers of SpectralInformation"""
 | |
|         i = 0
 | |
|         pin = array([c.power.signal+c.power.nli+c.power.ase for c in carriers]) # pin in W
 | |
|         freq = array([c.frequency for c in carriers])
 | |
|         brate = array([c.baud_rate for c in carriers])
 | |
|         # interpolate the amplifier vectors with the carriers freq, calculate nf & gain profile
 | |
|         self.interpol_params(freq, pin, brate, pref)
 | |
| 
 | |
|         gains = db2lin(self.gprofile)
 | |
|         carrier_ases = self.noise_profile(brate)
 | |
| 
 | |
|         for gain, carrier_ase, carrier in zip(gains, carrier_ases, carriers):
 | |
|             pwr = carrier.power
 | |
|             bw = carrier.baud_rate
 | |
|             pwr = pwr._replace(signal=pwr.signal*gain,
 | |
|                                nonlinear_interference=pwr.nli*gain,
 | |
|                                amplified_spontaneous_emission=(pwr.ase+carrier_ase)*gain)
 | |
|             yield carrier._replace(power=pwr)
 | |
| 
 | |
|     def update_pref(self, pref):
 | |
|         return pref._replace(p_span0=pref.p0, p_spani=pref.pi + self.effective_gain)
 | |
| 
 | |
|     def __call__(self, spectral_info):
 | |
|         carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers))
 | |
|         pref = self.update_pref(spectral_info.pref)
 | |
|         return spectral_info.update(carriers=carriers, pref=pref)
 |