TAI multiplexer

libtal-mux.so
Wataru Ishida

TAI multiplexer - libtai-mux.so

e TAl library to multiplex multiple TAI libraries
e |t can be used for hardware which supports multiple types of optical module (e.g. Edgecore Cassini)

e Available here:
o https://qithub.com/Telecominfraproject/oopt-tai-implementations/tree/master/tai_mux

Same codebase

TAIl adapter host

TAI
libtai-a.so
...... opt|ca|opt|ca|opt|ca|
Module A Module A Module A
Transponder

Transponders with one type
of optical modules

TAIl adapter host

TAI

libtai-mux.so

Exactly same interface

<— Hardware TAl library

TAI TAI
libtai-a.so libtai-b.so
...... opt|ca|opt|ca|opt|ca|
Module A Module A Module B
Transponder

Transponders with several
types of optical modules

https://github.com/Telecominfraproject/oopt-tai-implementations/tree/master/tai_mux

What libtai-mux.so does

1. Dynamic hardware TAl library loading/unloading
o Platform Adapter (PA) detects modules and decides which hardware TAI library to use
2. Object ID (OID) mapping
o Hardware TAl libraries could use the same object ID for different objects
o libtai-mux.so manages Object ID map and ensures unique IDs are returned to TAl adapter host

TAIl adapter host
0id:0x21 TAI
0id:0x11
l libtai-mux.so
2. assign unique OIDs to OIDs L ;
r_eturljed from hardware _TAI > OID map
libraries, and do translation (T o] PA
,f ™ — 1. detect a module,
oid:0x1 oo load appropriate libtai.so dynamically
L/ TAl N U and unload it when the module is gone
¥ <
libtai-a.so libtai-b.so
slot 1 slot 2

Platform Adapter (PA)

e PA detects module insertion/removal, decides which hardware TAl library to load/unload based on
their policy/configuration
e libtai-mux.so has modular design to support various types of PA
o The methods to detect modules varies between OS and hardware
o software/system vendors may develop their own PA
o Users can select a PA at runtime by passing an env variable TAI_MUX_PLATFORM_ADAPTER
e Currently only static platform adapter is open sourced

TAIl adapter host

TAI

JJ PAs are compiled in to libtai-mux.so,
libtai-mux.so PA X — And it can be selected at runtime

static PA

e static PA is a PA which uses static configuration

e It doesn’t do module detection and blindly call module presence() callback based on the
configuration

e Configuration format is json. The key is location of the module and the value is the library to use for
it

e By using the configuration below, libtai-a.so is used for modules whose location is 1,2,3,4, and
libtai-b.so is used for modules whose location is 5,6,7,8

: “libtai-a.so”,
: “libtai-a.so”,
: “libtai-a.so”,
: “libtai-a.so”,
: “libtai-b.s0”,
" “libtai-b.s0o”,
" “libtai-b.s0o”,
: “libtai-b.s0”

}

/etc/tai/mux/static.json

Future roadmap

e Add Open Network Linux (ONL) platform adapter
o We need to add dynamic module support to ONLP (Platform Abstraction Layer for ONL) first
o ONL PA automatically detects which type (e.g. ACO card, DCO card etc..) of module is
inserted and loads appropriate hardware TAI library.
m With this, we can hot swap different types of module without any config modification!
e Add mechanizm to handle register access in libtai-mux.so/PA layer
o Currently hardware TAl library needs to know how to do actual register access for particular
platform (e.g Which bus to use i2c, MDIO or PCle?)
o It would be nice if libtai-mux.so can give an abstracted register access callbacks to hardware
TAI library
m This can increase the portability of hardware TAl library
m Add entry to tai_service_method_table_t ?
m How to handle hardware pins (e.g. tx_dis, mod_abs, mod_lopwr)?
m How to handle hardware which uses several buses?

