
TAI multiplexer
libtai-mux.so

Wataru Ishida

TAI multiplexer - libtai-mux.so
● TAI library to multiplex multiple TAI libraries
● It can be used for hardware which supports multiple types of optical module (e.g. Edgecore Cassini)
● Available here:

○ https://github.com/Telecominfraproject/oopt-tai-implementations/tree/master/tai_mux

TAI adapter host

TAI

Optical
Module A

libtai-b.so

Optical
Module B

libtai-mux.so

TAI TAI

Transponder

Hardware TAI library

Optical
Module A

libtai-a.so

TAI adapter host

Optical
Module A

Optical
Module A

TAI

Transponder

Optical
Module A

libtai-a.so

Exactly same interface

Transponders with one type
of optical modules

Transponders with several
types of optical modules

Same codebase

https://github.com/Telecominfraproject/oopt-tai-implementations/tree/master/tai_mux

What libtai-mux.so does
1. Dynamic hardware TAI library loading/unloading

○ Platform Adapter (PA) detects modules and decides which hardware TAI library to use
2. Object ID (OID) mapping

○ Hardware TAI libraries could use the same object ID for different objects
○ libtai-mux.so manages Object ID map and ensures unique IDs are returned to TAI adapter host

TAI adapter host

TAI

libtai-b.so

libtai-mux.so

TAI TAI

libtai-a.so

PA

slot 1 slot 2

OID map

oid:0x1 oid:0x1

oid:0x11

oid:0x21

1. detect a module,
load appropriate libtai.so dynamically,
and unload it when the module is gone

2. assign unique OIDs to OIDs
returned from hardware TAI
libraries, and do translation

Platform Adapter (PA)
● PA detects module insertion/removal, decides which hardware TAI library to load/unload based on

their policy/configuration
● libtai-mux.so has modular design to support various types of PA

○ The methods to detect modules varies between OS and hardware
○ software/system vendors may develop their own PA
○ Users can select a PA at runtime by passing an env variable TAI_MUX_PLATFORM_ADAPTER

● Currently only static platform adapter is open sourced

TAI adapter host

TAI

libtai-mux.so PA X

PA Y

PA Z

OID map

PAs are compiled in to libtai-mux.so,
And it can be selected at runtime

static PA
● static PA is a PA which uses static configuration
● It doesn’t do module detection and blindly call module_presence() callback based on the

configuration
● Configuration format is json. The key is location of the module and the value is the library to use for

it
● By using the configuration below, libtai-a.so is used for modules whose location is 1,2,3,4, and

libtai-b.so is used for modules whose location is 5,6,7,8

{
 “1”: “libtai-a.so”,
 “2”: “libtai-a.so”,
 “3”: “libtai-a.so”,
 “4”: “libtai-a.so”,
 “5”: “libtai-b.so”,
 “6”: “libtai-b.so”,
 “7”: “libtai-b.so”,
 “8”: “libtai-b.so”
}

/etc/tai/mux/static.json

Future roadmap
● Add Open Network Linux (ONL) platform adapter

○ We need to add dynamic module support to ONLP (Platform Abstraction Layer for ONL) first
○ ONL PA automatically detects which type (e.g. ACO card, DCO card etc..) of module is

inserted and loads appropriate hardware TAI library.
■ With this, we can hot swap different types of module without any config modification!

● Add mechanizm to handle register access in libtai-mux.so/PA layer
○ Currently hardware TAI library needs to know how to do actual register access for particular

platform (e.g Which bus to use i2c, MDIO or PCIe?)
○ It would be nice if libtai-mux.so can give an abstracted register access callbacks to hardware

TAI library
■ This can increase the portability of hardware TAI library
■ Add entry to tai_service_method_table_t ?
■ How to handle hardware pins (e.g. tx_dis, mod_abs, mod_lopwr)?
■ How to handle hardware which uses several buses?

