Update vendoring

This commit is contained in:
Jeff Mitchell
2016-04-26 00:18:04 +00:00
parent c26838e6da
commit 97810148f3
253 changed files with 14960 additions and 4479 deletions

View File

@@ -108,9 +108,9 @@ func (r *Reader) Reset(reader io.Reader) {
r.readHeader = false
}
func (r *Reader) readFull(p []byte) (ok bool) {
func (r *Reader) readFull(p []byte, allowEOF bool) (ok bool) {
if _, r.err = io.ReadFull(r.r, p); r.err != nil {
if r.err == io.ErrUnexpectedEOF {
if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) {
r.err = ErrCorrupt
}
return false
@@ -129,7 +129,7 @@ func (r *Reader) Read(p []byte) (int, error) {
r.i += n
return n, nil
}
if !r.readFull(r.buf[:4]) {
if !r.readFull(r.buf[:4], true) {
return 0, r.err
}
chunkType := r.buf[0]
@@ -156,7 +156,7 @@ func (r *Reader) Read(p []byte) (int, error) {
return 0, r.err
}
buf := r.buf[:chunkLen]
if !r.readFull(buf) {
if !r.readFull(buf, false) {
return 0, r.err
}
checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
@@ -189,13 +189,17 @@ func (r *Reader) Read(p []byte) (int, error) {
return 0, r.err
}
buf := r.buf[:checksumSize]
if !r.readFull(buf) {
if !r.readFull(buf, false) {
return 0, r.err
}
checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
// Read directly into r.decoded instead of via r.buf.
n := chunkLen - checksumSize
if !r.readFull(r.decoded[:n]) {
if n > len(r.decoded) {
r.err = ErrCorrupt
return 0, r.err
}
if !r.readFull(r.decoded[:n], false) {
return 0, r.err
}
if crc(r.decoded[:n]) != checksum {
@@ -211,7 +215,7 @@ func (r *Reader) Read(p []byte) (int, error) {
r.err = ErrCorrupt
return 0, r.err
}
if !r.readFull(r.buf[:len(magicBody)]) {
if !r.readFull(r.buf[:len(magicBody)], false) {
return 0, r.err
}
for i := 0; i < len(magicBody); i++ {
@@ -230,7 +234,7 @@ func (r *Reader) Read(p []byte) (int, error) {
}
// Section 4.4 Padding (chunk type 0xfe).
// Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd).
if !r.readFull(r.buf[:chunkLen]) {
if !r.readFull(r.buf[:chunkLen], false) {
return 0, r.err
}
}

View File

@@ -2,6 +2,10 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
package snappy
// decode has the same semantics as in decode_other.go.

View File

@@ -2,12 +2,16 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// func decode(dst, src []byte) int
//
// The asm code generally follows the pure Go code in decode_other.go, except
// where marked with a "!!!".
// func decode(dst, src []byte) int
//
// All local variables fit into registers. The non-zero stack size is only to
// spill registers and push args when issuing a CALL. The register allocation:

View File

@@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64
// +build !amd64 appengine !gc noasm
package snappy

View File

@@ -10,78 +10,11 @@ import (
"io"
)
// maxOffset limits how far copy back-references can go, the same as the C++
// code.
const maxOffset = 1 << 15
// emitLiteral writes a literal chunk and returns the number of bytes written.
func emitLiteral(dst, lit []byte) int {
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[0] = 60<<2 | tagLiteral
dst[1] = uint8(n)
i = 2
case n < 1<<16:
dst[0] = 61<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
i = 3
case n < 1<<24:
dst[0] = 62<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
dst[3] = uint8(n >> 16)
i = 4
case int64(n) < 1<<32:
dst[0] = 63<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
dst[3] = uint8(n >> 16)
dst[4] = uint8(n >> 24)
i = 5
default:
panic("snappy: source buffer is too long")
}
if copy(dst[i:], lit) != len(lit) {
panic("snappy: destination buffer is too short")
}
return i + len(lit)
}
// emitCopy writes a copy chunk and returns the number of bytes written.
func emitCopy(dst []byte, offset, length int32) int {
i := 0
for length > 0 {
x := length - 4
if 0 <= x && x < 1<<3 && offset < 1<<11 {
dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
dst[i+1] = uint8(offset)
i += 2
break
}
x = length
if x > 1<<6 {
x = 1 << 6
}
dst[i+0] = uint8(x-1)<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= x
}
return i
}
// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// It is valid to pass a nil dst.
// The dst and src must not overlap. It is valid to pass a nil dst.
func Encode(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
@@ -98,94 +31,43 @@ func Encode(dst, src []byte) []byte {
if len(p) > maxBlockSize {
p, src = p[:maxBlockSize], p[maxBlockSize:]
}
d += encodeBlock(dst[d:], p)
if len(p) < minNonLiteralBlockSize {
d += emitLiteral(dst[d:], p)
} else {
d += encodeBlock(dst[d:], p)
}
}
return dst[:d]
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
// inputMargin is the minimum number of extra input bytes to keep, inside
// encodeBlock's inner loop. On some architectures, this margin lets us
// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
// literals can be implemented as a single load to and store from a 16-byte
// register. That literal's actual length can be as short as 1 byte, so this
// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
// the encoding loop will fix up the copy overrun, and this inputMargin ensures
// that we don't overrun the dst and src buffers.
const inputMargin = 16 - 1
// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
// could be encoded with a copy tag. This is the minimum with respect to the
// algorithm used by encodeBlock, not a minimum enforced by the file format.
//
// It also assumes that:
// len(dst) >= MaxEncodedLen(len(src)) &&
// 0 < len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
// Return early if src is short.
if len(src) <= 4 {
return emitLiteral(dst, src)
}
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
const maxTableSize = 1 << 14
shift, tableSize := uint(32-8), 1<<8
for tableSize < maxTableSize && tableSize < len(src) {
shift--
tableSize *= 2
}
var table [maxTableSize]int32
// Iterate over the source bytes.
var (
s int32 // The iterator position.
t int32 // The last position with the same hash as s.
lit int32 // The start position of any pending literal bytes.
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned, look at every third byte, etc.. When a match is found,
// immediately go back to looking at every byte. This is a small loss
// (~5% performance, ~0.1% density) for compressible data due to more
// bookkeeping, but for non-compressible data (such as JPEG) it's a
// huge win since the compressor quickly "realizes" the data is
// incompressible and doesn't bother looking for matches everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip uint32 = 32
)
for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
// Update the hash table.
b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
p := &table[(h*0x1e35a7bd)>>shift]
// We need to to store values in [-1, inf) in table. To save
// some initialization time, (re)use the table's zero value
// and shift the values against this zero: add 1 on writes,
// subtract 1 on reads.
t, *p = *p-1, s+1
// If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
s += int32(skip >> 5)
skip++
continue
}
skip = 32
// Otherwise, we have a match. First, emit any pending literal bytes.
if lit != s {
d += emitLiteral(dst[d:], src[lit:s])
}
// Extend the match to be as long as possible.
s0 := s
s, t = s+4, t+4
for int(s) < len(src) && src[s] == src[t] {
s++
t++
}
// Emit the copied bytes.
d += emitCopy(dst[d:], s-t, s-s0)
lit = s
}
// Emit any final pending literal bytes and return.
if int(lit) != len(src) {
d += emitLiteral(dst[d:], src[lit:])
}
return d
}
// The encoded output must start with at least a 1 byte literal, as there are
// no previous bytes to copy. A minimal (1 byte) copy after that, generated
// from an emitCopy call in encodeBlock's main loop, would require at least
// another inputMargin bytes, for the reason above: we want any emitLiteral
// calls inside encodeBlock's main loop to use the fast path if possible, which
// requires being able to overrun by inputMargin bytes. Thus,
// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
//
// The C++ code doesn't use this exact threshold, but it could, as discussed at
// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
// optimization. It should not affect the encoded form. This is tested by
// TestSameEncodingAsCppShortCopies.
const minNonLiteralBlockSize = 1 + 1 + inputMargin
// MaxEncodedLen returns the maximum length of a snappy block, given its
// uncompressed length.

29
vendor/github.com/golang/snappy/encode_amd64.go generated vendored Normal file
View File

@@ -0,0 +1,29 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
package snappy
// emitLiteral has the same semantics as in encode_other.go.
//
//go:noescape
func emitLiteral(dst, lit []byte) int
// emitCopy has the same semantics as in encode_other.go.
//
//go:noescape
func emitCopy(dst []byte, offset, length int) int
// extendMatch has the same semantics as in encode_other.go.
//
//go:noescape
func extendMatch(src []byte, i, j int) int
// encodeBlock has the same semantics as in encode_other.go.
//
//go:noescape
func encodeBlock(dst, src []byte) (d int)

608
vendor/github.com/golang/snappy/encode_amd64.s generated vendored Normal file
View File

@@ -0,0 +1,608 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// TODO: figure out why the XXX lines compile with Go 1.4 and Go tip but not
// Go 1.6.
//
// This is https://github.com/golang/snappy/issues/29
// The asm code generally follows the pure Go code in encode_other.go, except
// where marked with a "!!!".
// ----------------------------------------------------------------------------
// func emitLiteral(dst, lit []byte) int
//
// All local variables fit into registers. The register allocation:
// - AX return value
// - BX n
// - CX len(lit)
// - SI &lit[0]
// - DI &dst[i]
//
// The 24 bytes of stack space is to call runtime·memmove.
TEXT ·emitLiteral(SB), NOSPLIT, $24-56
MOVQ dst_base+0(FP), DI
MOVQ lit_base+24(FP), SI
MOVQ lit_len+32(FP), CX
MOVQ CX, AX
MOVL CX, BX
SUBL $1, BX
CMPL BX, $60
JLT oneByte
CMPL BX, $256
JLT twoBytes
threeBytes:
MOVB $0xf4, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
ADDQ $3, AX
JMP emitLiteralEnd
twoBytes:
MOVB $0xf0, 0(DI)
MOVB BX, 1(DI)
ADDQ $2, DI
ADDQ $2, AX
JMP emitLiteralEnd
oneByte:
SHLB $2, BX
MOVB BX, 0(DI)
ADDQ $1, DI
ADDQ $1, AX
emitLiteralEnd:
MOVQ AX, ret+48(FP)
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// DI, SI and CX as arguments.
MOVQ DI, 0(SP)
MOVQ SI, 8(SP)
MOVQ CX, 16(SP)
CALL runtime·memmove(SB)
RET
// ----------------------------------------------------------------------------
// func emitCopy(dst []byte, offset, length int) int
//
// All local variables fit into registers. The register allocation:
// - BX offset
// - CX length
// - SI &dst[0]
// - DI &dst[i]
TEXT ·emitCopy(SB), NOSPLIT, $0-48
MOVQ dst_base+0(FP), DI
MOVQ DI, SI
MOVQ offset+24(FP), BX
MOVQ length+32(FP), CX
loop0:
// for length >= 68 { etc }
CMPL CX, $68
JLT step1
// Emit a length 64 copy, encoded as 3 bytes.
MOVB $0xfe, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
SUBL $64, CX
JMP loop0
step1:
// if length > 64 { etc }
CMPL CX, $64
JLE step2
// Emit a length 60 copy, encoded as 3 bytes.
MOVB $0xee, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
SUBL $60, CX
step2:
// if length >= 12 || offset >= 2048 { goto step3 }
CMPL CX, $12
JGE step3
CMPL BX, $2048
JGE step3
// Emit the remaining copy, encoded as 2 bytes.
MOVB BX, 1(DI)
SHRL $8, BX
SHLB $5, BX
SUBB $4, CX
SHLB $2, CX
ORB CX, BX
ORB $1, BX
MOVB BX, 0(DI)
ADDQ $2, DI
// Return the number of bytes written.
SUBQ SI, DI
MOVQ DI, ret+40(FP)
RET
step3:
// Emit the remaining copy, encoded as 3 bytes.
SUBL $1, CX
SHLB $2, CX
ORB $2, CX
MOVB CX, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
// Return the number of bytes written.
SUBQ SI, DI
MOVQ DI, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func extendMatch(src []byte, i, j int) int
//
// All local variables fit into registers. The register allocation:
// - CX &src[0]
// - DX &src[len(src)]
// - SI &src[i]
// - DI &src[j]
// - R9 &src[len(src) - 8]
TEXT ·extendMatch(SB), NOSPLIT, $0-48
MOVQ src_base+0(FP), CX
MOVQ src_len+8(FP), DX
MOVQ i+24(FP), SI
MOVQ j+32(FP), DI
ADDQ CX, DX
ADDQ CX, SI
ADDQ CX, DI
MOVQ DX, R9
SUBQ $8, R9
cmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMPQ DI, R9
JA cmp1
MOVQ (SI), AX
MOVQ (DI), BX
CMPQ AX, BX
JNE bsf
ADDQ $8, SI
ADDQ $8, DI
JMP cmp8
bsf:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs. The BSF instruction finds the
// least significant 1 bit, the amd64 architecture is little-endian, and
// the shift by 3 converts a bit index to a byte index.
XORQ AX, BX
BSFQ BX, BX
SHRQ $3, BX
ADDQ BX, DI
// Convert from &src[ret] to ret.
SUBQ CX, DI
MOVQ DI, ret+40(FP)
RET
cmp1:
// In src's tail, compare 1 byte at a time.
CMPQ DI, DX
JAE extendMatchEnd
MOVB (SI), AX
MOVB (DI), BX
CMPB AX, BX
JNE extendMatchEnd
ADDQ $1, SI
ADDQ $1, DI
JMP cmp1
extendMatchEnd:
// Convert from &src[ret] to ret.
SUBQ CX, DI
MOVQ DI, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func encodeBlock(dst, src []byte) (d int)
//
// All local variables fit into registers, other than "var table". The register
// allocation:
// - AX . .
// - BX . .
// - CX 56 shift (note that amd64 shifts by non-immediates must use CX).
// - DX 64 &src[0], tableSize
// - SI 72 &src[s]
// - DI 80 &dst[d]
// - R9 88 sLimit
// - R10 . &src[nextEmit]
// - R11 96 prevHash, currHash, nextHash, offset
// - R12 104 &src[base], skip
// - R13 . &src[nextS]
// - R14 . len(src), bytesBetweenHashLookups, x
// - R15 112 candidate
//
// The second column (56, 64, etc) is the stack offset to spill the registers
// when calling other functions. We could pack this slightly tighter, but it's
// simpler to have a dedicated spill map independent of the function called.
//
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
TEXT ·encodeBlock(SB), 0, $32888-56
MOVQ dst_base+0(FP), DI
MOVQ src_base+24(FP), SI
MOVQ src_len+32(FP), R14
// shift, tableSize := uint32(32-8), 1<<8
MOVQ $24, CX
MOVQ $256, DX
calcShift:
// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
// shift--
// }
CMPQ DX, $16384
JGE varTable
CMPQ DX, R14
JGE varTable
SUBQ $1, CX
SHLQ $1, DX
JMP calcShift
varTable:
// var table [maxTableSize]uint16
//
// In the asm code, unlike the Go code, we can zero-initialize only the
// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
// writes 16 bytes, so we can do only tableSize/8 writes instead of the
// 2048 writes that would zero-initialize all of table's 32768 bytes.
SHRQ $3, DX
LEAQ table-32768(SP), BX
PXOR X0, X0
memclr:
MOVOU X0, 0(BX)
ADDQ $16, BX
SUBQ $1, DX
JNZ memclr
// !!! DX = &src[0]
MOVQ SI, DX
// sLimit := len(src) - inputMargin
MOVQ R14, R9
SUBQ $15, R9
// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
// change for the rest of the function.
MOVQ CX, 56(SP)
MOVQ DX, 64(SP)
MOVQ R9, 88(SP)
// nextEmit := 0
MOVQ DX, R10
// s := 1
ADDQ $1, SI
// nextHash := hash(load32(src, s), shift)
MOVL 0(SI), R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
outer:
// for { etc }
// skip := 32
MOVQ $32, R12
// nextS := s
MOVQ SI, R13
// candidate := 0
MOVQ $0, R15
inner0:
// for { etc }
// s := nextS
MOVQ R13, SI
// bytesBetweenHashLookups := skip >> 5
MOVQ R12, R14
SHRQ $5, R14
// nextS = s + bytesBetweenHashLookups
ADDQ R14, R13
// skip += bytesBetweenHashLookups
ADDQ R14, R12
// if nextS > sLimit { goto emitRemainder }
MOVQ R13, AX
SUBQ DX, AX
CMPQ AX, R9
JA emitRemainder
// candidate = int(table[nextHash])
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
BYTE $0x4e
BYTE $0x0f
BYTE $0xb7
BYTE $0x7c
BYTE $0x5c
BYTE $0x78
// table[nextHash] = uint16(s)
MOVQ SI, AX
SUBQ DX, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// nextHash = hash(load32(src, nextS), shift)
MOVL 0(R13), R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// if load32(src, s) != load32(src, candidate) { continue } break
MOVL 0(SI), AX
MOVL (DX)(R15*1), BX
CMPL AX, BX
JNE inner0
fourByteMatch:
// As per the encode_other.go code:
//
// A 4-byte match has been found. We'll later see etc.
// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
// on inputMargin in encode.go.
MOVQ SI, AX
SUBQ R10, AX
CMPQ AX, $16
JLE emitLiteralFastPath
// d += emitLiteral(dst[d:], src[nextEmit:s])
//
// Push args.
MOVQ DI, 0(SP)
MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ R10, 24(SP)
MOVQ AX, 32(SP)
MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative.
// Spill local variables (registers) onto the stack; call; unspill.
MOVQ SI, 72(SP)
MOVQ DI, 80(SP)
MOVQ R15, 112(SP)
CALL ·emitLiteral(SB)
MOVQ 56(SP), CX
MOVQ 64(SP), DX
MOVQ 72(SP), SI
MOVQ 80(SP), DI
MOVQ 88(SP), R9
MOVQ 112(SP), R15
// Finish the "d +=" part of "d += emitLiteral(etc)".
ADDQ 48(SP), DI
JMP inner1
emitLiteralFastPath:
// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
MOVB AX, BX
SUBB $1, BX
SHLB $2, BX
MOVB BX, (DI)
ADDQ $1, DI
// !!! Implement the copy from lit to dst as a 16-byte load and store.
// (Encode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only len(lit) bytes, but that's
// OK. Subsequent iterations will fix up the overrun.
//
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
MOVOU 0(R10), X0
MOVOU X0, 0(DI)
ADDQ AX, DI
inner1:
// for { etc }
// base := s
MOVQ SI, R12
// !!! offset := base - candidate
MOVQ R12, R11
SUBQ R15, R11
SUBQ DX, R11
// s = extendMatch(src, candidate+4, s+4)
//
// Push args.
MOVQ DX, 0(SP)
MOVQ src_len+32(FP), R14
MOVQ R14, 8(SP)
MOVQ R14, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
ADDQ $4, R15
MOVQ R15, 24(SP)
ADDQ $4, SI
SUBQ DX, SI
MOVQ SI, 32(SP)
// Spill local variables (registers) onto the stack; call; unspill.
//
// We don't need to unspill CX or R9 as we are just about to call another
// function.
MOVQ DI, 80(SP)
MOVQ R11, 96(SP)
MOVQ R12, 104(SP)
CALL ·extendMatch(SB)
MOVQ 64(SP), DX
MOVQ 80(SP), DI
MOVQ 96(SP), R11
MOVQ 104(SP), R12
// Finish the "s =" part of "s = extendMatch(etc)", remembering that the SI
// register holds &src[s], not s.
MOVQ 40(SP), SI
ADDQ DX, SI
// d += emitCopy(dst[d:], base-candidate, s-base)
//
// Push args.
MOVQ DI, 0(SP)
MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ R11, 24(SP)
MOVQ SI, AX
SUBQ R12, AX
MOVQ AX, 32(SP)
// Spill local variables (registers) onto the stack; call; unspill.
MOVQ SI, 72(SP)
MOVQ DI, 80(SP)
CALL ·emitCopy(SB)
MOVQ 56(SP), CX
MOVQ 64(SP), DX
MOVQ 72(SP), SI
MOVQ 80(SP), DI
MOVQ 88(SP), R9
// Finish the "d +=" part of "d += emitCopy(etc)".
ADDQ 40(SP), DI
// nextEmit = s
MOVQ SI, R10
// if s >= sLimit { goto emitRemainder }
MOVQ SI, AX
SUBQ DX, AX
CMPQ AX, R9
JAE emitRemainder
// As per the encode_other.go code:
//
// We could immediately etc.
// x := load64(src, s-1)
MOVQ -1(SI), R14
// prevHash := hash(uint32(x>>0), shift)
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// table[prevHash] = uint16(s-1)
MOVQ SI, AX
SUBQ DX, AX
SUBQ $1, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// currHash := hash(uint32(x>>8), shift)
SHRQ $8, R14
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// candidate = int(table[currHash])
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
BYTE $0x4e
BYTE $0x0f
BYTE $0xb7
BYTE $0x7c
BYTE $0x5c
BYTE $0x78
// table[currHash] = uint16(s)
ADDQ $1, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// if uint32(x>>8) == load32(src, candidate) { continue }
MOVL (DX)(R15*1), BX
CMPL R14, BX
JEQ inner1
// nextHash = hash(uint32(x>>16), shift)
SHRQ $8, R14
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// s++
ADDQ $1, SI
// break out of the inner1 for loop, i.e. continue the outer loop.
JMP outer
emitRemainder:
// if nextEmit < len(src) { etc }
MOVQ src_len+32(FP), AX
ADDQ DX, AX
CMPQ R10, AX
JEQ encodeBlockEnd
// d += emitLiteral(dst[d:], src[nextEmit:])
//
// Push args.
MOVQ DI, 0(SP)
MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ R10, 24(SP)
SUBQ R10, AX
MOVQ AX, 32(SP)
MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative.
// Spill local variables (registers) onto the stack; call; unspill.
MOVQ DI, 80(SP)
CALL ·emitLiteral(SB)
MOVQ 80(SP), DI
// Finish the "d +=" part of "d += emitLiteral(etc)".
ADDQ 48(SP), DI
encodeBlockEnd:
MOVQ dst_base+0(FP), AX
SUBQ AX, DI
MOVQ DI, d+48(FP)
RET

238
vendor/github.com/golang/snappy/encode_other.go generated vendored Normal file
View File

@@ -0,0 +1,238 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64 appengine !gc noasm
package snappy
func load32(b []byte, i int) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= len(lit) && len(lit) <= 65536
func emitLiteral(dst, lit []byte) int {
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[0] = 60<<2 | tagLiteral
dst[1] = uint8(n)
i = 2
default:
dst[0] = 61<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
i = 3
}
return i + copy(dst[i:], lit)
}
// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= offset && offset <= 65535
// 4 <= length && length <= 65535
func emitCopy(dst []byte, offset, length int) int {
i := 0
// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
// threshold for this loop is a little higher (at 68 = 64 + 4), and the
// length emitted down below is is a little lower (at 60 = 64 - 4), because
// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
for length >= 68 {
// Emit a length 64 copy, encoded as 3 bytes.
dst[i+0] = 63<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 64
}
if length > 64 {
// Emit a length 60 copy, encoded as 3 bytes.
dst[i+0] = 59<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 60
}
if length >= 12 || offset >= 2048 {
// Emit the remaining copy, encoded as 3 bytes.
dst[i+0] = uint8(length-1)<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
return i + 3
}
// Emit the remaining copy, encoded as 2 bytes.
dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
dst[i+1] = uint8(offset)
return i + 2
}
// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
// 0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
}
return j
}
func hash(u, shift uint32) uint32 {
return (u * 0x1e35a7bd) >> shift
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
// len(dst) >= MaxEncodedLen(len(src)) &&
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
// The table element type is uint16, as s < sLimit and sLimit < len(src)
// and len(src) <= maxBlockSize and maxBlockSize == 65536.
const (
maxTableSize = 1 << 14
// tableMask is redundant, but helps the compiler eliminate bounds
// checks.
tableMask = maxTableSize - 1
)
shift := uint32(32 - 8)
for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
shift--
}
// In Go, all array elements are zero-initialized, so there is no advantage
// to a smaller tableSize per se. However, it matches the C++ algorithm,
// and in the asm versions of this code, we can get away with zeroing only
// the first tableSize elements.
var table [maxTableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := hash(load32(src, s), shift)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&tableMask])
table[nextHash&tableMask] = uint16(s)
nextHash = hash(load32(src, nextS), shift)
if load32(src, s) == load32(src, candidate) {
break
}
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
d += emitLiteral(dst[d:], src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
// Extend the 4-byte match as long as possible.
//
// This is an inlined version of:
// s = extendMatch(src, candidate+4, s+4)
s += 4
for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
}
d += emitCopy(dst[d:], base-candidate, s-base)
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x>>0), shift)
table[prevHash&tableMask] = uint16(s - 1)
currHash := hash(uint32(x>>8), shift)
candidate = int(table[currHash&tableMask])
table[currHash&tableMask] = uint16(s)
if uint32(x>>8) != load32(src, candidate) {
nextHash = hash(uint32(x>>16), shift)
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
d += emitLiteral(dst[d:], src[nextEmit:])
}
return d
}