Files
wlan-cloud-lib-cppkafka/include/cppkafka/utils/buffered_producer.h
2020-10-18 12:30:27 +01:00

1279 lines
51 KiB
C++

/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef CPPKAFKA_BUFFERED_PRODUCER_H
#define CPPKAFKA_BUFFERED_PRODUCER_H
#include <string>
#include <deque>
#include <cstdint>
#include <algorithm>
#include <map>
#include <mutex>
#include <atomic>
#include <future>
#include <thread>
#include "../producer.h"
#include "../detail/callback_invoker.h"
#include "../message_internal.h"
namespace cppkafka {
/**
* \brief Allows producing messages and waiting for them to be acknowledged by kafka brokers
*
* This class allows buffering messages and flushing them synchronously while also allowing
* to produce them just as you would using the Producer class.
*
* When calling either flush or wait_for_acks/wait_for_current_thread_acks, the buffered producer
* will block until all produced messages (either buffered or sent directly) are acknowledged
* by the kafka brokers.
*
* When producing messages, this class will handle cases where the producer's queue is full so it
* will poll until the production is successful.
*
* \remark This class is thread safe.
*
* \remark Releasing buffers: For high-performance applications preferring a zero-copy approach
* (using PayloadPolicy::PASSTHROUGH_PAYLOAD - see warning below) it is very important to know when
* to safely release owned message buffers. One way is to perform individual cleanup when
* ProduceSuccessCallback is called. If the application produces messages in batches or has a
* bursty behavior another way is to check when flush operations have fully completed with
* get_buffer_size()==0 && get_flushes_in_progress()==0. Note that get_pending_acks()==0
* is not always a guarantee as there is very small window when flush() starts where
* get_buffer_size()==0 && get_pending_acks()==0 but messages have not yet been sent to the
* remote broker. For applications producing messages w/o buffering, get_pending_acks()==0
* is sufficient.
*
* \warning Delivery Report Callback: This class makes internal use of this function and will
* overwrite anything the user has supplied as part of the configuration options. Instead user
* should call set_produce_success_callback() and set_produce_failure_callback() respectively.
*
* \warning Payload Policy: For payload-owning BufferTypes such as std::string or std::vector<char>
* the default policy is set to Producer::PayloadPolicy::COPY_PAYLOAD. For the specific non-payload owning type
* cppkafka::Buffer the policy is Producer::PayloadPolicy::PASSTHROUGH_PAYLOAD. In this case, librdkafka
* shall not make any internal copies of the message and it is the application's responsibility to free
* the messages *after* the ProduceSuccessCallback has reported a successful delivery to avoid memory
* corruptions.
*/
template <typename BufferType,
typename Allocator = std::allocator<ConcreteMessageBuilder<BufferType>>>
class CPPKAFKA_API BufferedProducer {
public:
enum class FlushMethod {
Sync, ///< Empty the buffer and wait for acks from the broker.
Async ///< Empty the buffer and don't wait for acks.
};
enum class QueueFullNotification {
None, ///< Don't notify (default).
OncePerMessage, ///< Notify once per message.
EachOccurence ///< Notify on each occurence.
};
/**
* Concrete builder
*/
using Builder = ConcreteMessageBuilder<BufferType>;
using QueueType = std::deque<Builder, Allocator>;
/**
* Callback to indicate a message was delivered to the broker
*/
using ProduceSuccessCallback = std::function<void(const Message&)>;
/**
* Callback to indicate a message failed to be produced by the broker.
*
* The returned bool indicates whether the BufferedProducer should try to produce
* the message again after each failure, subject to the maximum number of retries set. If this callback
* is not set or returns false or if the number of retries reaches zero, the ProduceTerminationCallback
* will be called.
*/
using ProduceFailureCallback = std::function<bool(const Message&)>;
/**
* Callback to indicate a message failed to be produced by the broker and was dropped.
*
* The application can use this callback to track delivery failure of messages similar to the
* FlushTerminationCallback. If the application is only interested in message dropped events,
* then ProduceFailureCallback should not be set.
*/
using ProduceTerminationCallback = std::function<void(const Message&)>;
/**
* Callback to indicate a message failed to be flushed
*
* If this callback returns true, the message will be re-enqueued and flushed again later subject
* to the maximum number of retries set. If this callback is not set or returns false or if the number of retries
* reaches zero, the FlushTerminationCallback will be called.
*/
using FlushFailureCallback = std::function<bool(const MessageBuilder&, Error error)>;
/**
* Callback to indicate a message was dropped after multiple flush attempts or when the retry count
* reaches zero.
*
* The application can use this callback to track delivery failure of messages similar to the
* ProduceTerminationCallback. If the application is only interested in message dropped events,
* then FlushFailureCallback should not be set.
*/
using FlushTerminationCallback = std::function<void(const MessageBuilder&, Error error)>;
/**
* Callback to indicate a RD_KAFKA_RESP_ERR__QUEUE_FULL was received when producing.
*
* The MessageBuilder instance represents the message which triggered the error. This callback will be called
* according to the set_queue_full_notification() setting.
*/
using QueueFullCallback = std::function<void(const MessageBuilder&)>;
/**
* \brief Constructs a buffered producer using the provided configuration
*
* \param config The configuration to be used on the actual Producer object
* \param alloc The optionally supplied allocator for the internal message buffer
*/
BufferedProducer(Configuration config, const Allocator& alloc = Allocator());
/**
* \brief Adds a message to the producer's buffer.
*
* The message won't be sent until flush is called.
*
* \param builder The builder that contains the message to be added
*/
void add_message(const MessageBuilder& builder);
/**
* \brief Adds a message to the producer's buffer.
*
* The message won't be sent until flush is called.
*
* Using this overload, you can avoid copies and construct your builder using the type
* you are actually using in this buffered producer.
*
* \param builder The builder that contains the message to be added
*/
void add_message(Builder builder);
/**
* \brief Produces a message asynchronously without buffering it
*
* The message will still be tracked so that a call to flush or
* wait_for_acks/wait_for_current_thread_acks will actually wait for it
* to be acknowledged.
*
* \param builder The builder that contains the message to be produced
*
* \remark This method throws cppkafka::HandleException on failure
*/
void produce(const MessageBuilder& builder);
/**
* \brief Produces a message synchronously without buffering it
*
* In case of failure, the message will be replayed until 'max_number_retries' is reached
* or until the user ProduceFailureCallback returns false.
*
* \param builder The builder that contains the message to be produced
*
* \remark This method throws cppkafka::HandleException on failure
*/
void sync_produce(const MessageBuilder& builder);
/**
* \brief Same as sync_produce but waits up to 'timeout' for acks to be received.
*
* If retries are enabled, the timeout will limit the amount of time to wait
* before all retries are completed.
*
* \returns True if succeeded, false otherwise. If retries are enabled, false
* indicates there are still retries left.
*/
bool sync_produce(const MessageBuilder& builder, std::chrono::milliseconds timeout);
/**
* \brief Produces a message asynchronously without buffering it
*
* The message will still be tracked so that a call to flush or
* wait_for_acks/wait_for_current_thread_acks will actually wait for it
* to be acknowledged.
*
* \param message The message to be produced
*
* \remark This method throws cppkafka::HandleException on failure
*/
void produce(const Message& message);
/**
* \brief Flushes all buffered messages and returns immediately.
*
* Similar to flush, it will send all messages but will not wait for acks to complete. However the underlying
* producer will still be flushed.
*/
void async_flush();
/**
* \brief Flushes the buffered messages.
*
* This will send all messages and keep waiting until all of them are acknowledged (this is
* done by calling wait_for_acks/wait_for_current_thread_acks).
*
* \param preserve_order If set to True, each message in the queue will be flushed only when the previous
* message ack is received. This may result in performance degradation as messages
* are sent one at a time. This calls sync_produce() on each message in the buffer.
* If set to False, all messages are flushed in one batch before waiting for acks,
* however message reordering may occur if librdkafka setting 'messages.sent.max.retries > 0'.
*
* \remark Although it is possible to call flush from multiple threads concurrently, better
* performance is achieved when called from the same thread or when serialized
* with respect to other threads.
*/
void flush(bool preserve_order = false);
/**
* \brief Flushes the buffered messages and waits up to 'timeout'
*
* \param timeout The maximum time to wait until all acks are received
*
* \param preserve_order True to preserve message ordering, False otherwise. See flush above for more details.
*
* \return True if the operation completes and all acks have been received.
*/
bool flush(std::chrono::milliseconds timeout, bool preserve_order = false);
/**
* \brief Waits for produced message's acknowledgements from the brokers
*/
void wait_for_acks();
/**
* \brief Waits for acknowledgements from brokers for messages produced
* on the current thread only
*/
void wait_for_current_thread_acks();
/**
* \brief Waits for produced message's acknowledgements from the brokers up to 'timeout'.
*
* \return True if the operation completes and all acks have been received.
*/
bool wait_for_acks(std::chrono::milliseconds timeout);
/**
* \brief Waits for acknowledgements from brokers for messages produced
* on the current thread only. Times out after 'timeout' milliseconds.
*
* \return True if the operation completes and all acks have been received.
*/
bool wait_for_current_thread_acks(std::chrono::milliseconds timeout);
/**
* Clears any buffered messages
*/
void clear();
/**
* \brief Get the number of messages in the buffer
*
* \return The number of messages
*/
size_t get_buffer_size() const;
/**
* \brief Sets the maximum amount of messages to be enqueued in the buffer.
*
* After 'max_buffer_size' is reached, flush() will be called automatically.
*
* \param size The max size of the internal buffer. Allowed values are:
* -1 : Unlimited buffer size. Must be flushed manually (default value)
* 0 : Don't buffer anything. add_message() behaves like produce()
* > 0 : Max number of messages before flush() is called.
*
* \remark add_message() will block when 'max_buffer_size' is reached due to flush()
*/
void set_max_buffer_size(ssize_t max_buffer_size);
/**
* \brief Return the maximum allowed buffer size.
*
* \return The max buffer size. A value of -1 indicates an unbounded buffer.
*/
ssize_t get_max_buffer_size() const;
/**
* \brief Sets the method used to flush the internal buffer when 'max_buffer_size' is reached.
* Default is 'Sync'
*
* \param method The method
*/
void set_flush_method(FlushMethod method);
/**
* \brief Gets the method used to flush the internal buffer.
*
* \return The method
*/
FlushMethod get_flush_method() const;
/**
* \brief Get the number of messages not yet acked by the broker.
*
* \return The number of messages
*/
size_t get_pending_acks() const;
/**
* \brief Get the number of pending acks for messages produces on the
* current thread only.
*
* \return The number of messages
*/
size_t get_current_thread_pending_acks() const;
/**
* \brief Get the total number of messages successfully produced since the beginning
*
* \return The number of messages
*/
size_t get_total_messages_produced() const;
/**
* \brief Get the total number of messages dropped since the beginning
*
* \return The number of messages
*/
size_t get_total_messages_dropped() const;
/**
* \brief Get the total outstanding flush operations in progress
*
* Since flush can be called from multiple threads concurrently, this counter indicates
* how many operations are curretnly in progress.
*
* \return The number of outstanding flush operations.
*/
size_t get_flushes_in_progress() const;
/**
* \brief Sets the maximum number of retries per message until giving up. Default is 5.
*
* \remark Is it recommended to set the RdKafka option message.send.max.retries=0
* to prevent re-ordering of messages inside RdKafka.
*/
void set_max_number_retries(size_t max_number_retries);
/**
* \brief Gets the max number of retries
*
* \return The number of retries
*/
size_t get_max_number_retries() const;
/**
* Gets the Producer object
*/
Producer& get_producer();
/**
* Gets the Producer object
*/
const Producer& get_producer() const;
/**
* Simple helper to construct a builder object
*/
Builder make_builder(std::string topic);
/**
* Set the type of notification when RD_KAFKA_RESP_ERR__QUEUE_FULL is received.
*
* This will call the error callback for this producer. By default this is set to QueueFullNotification::None.
*/
void set_queue_full_notification(QueueFullNotification notification);
/**
* Get the queue full notification type.
*/
QueueFullNotification get_queue_full_notification() const;
/**
* \brief Sets the message produce failure callback
*
* This will be called when the delivery report callback is executed for a message having
* an error. The callback should return true if the message should be re-sent, otherwise
* false. Note that if the callback return false, then the message will be discarded.
*
* \param callback The callback to be set
*
* \warning Do not call any method on the BufferedProducer while inside this callback.
*/
void set_produce_failure_callback(ProduceFailureCallback callback);
/**
* \brief Sets the message produce termination callback
*
* This will be called when the delivery report callback is executed for a message having
* an error and after all retries have expired and the message is dropped.
*
* \param callback The callback to be set
*
* \remark If the application only tracks dropped messages, the set_produce_failure_callback() should not be set.
*
* \warning Do not call any method on the BufferedProducer while inside this callback.
*/
void set_produce_termination_callback(ProduceTerminationCallback callback);
/**
* \brief Sets the successful delivery callback
*
* The user can use this function to cleanup any application-owned message buffers.
*
* \param callback The callback to be set
*/
void set_produce_success_callback(ProduceSuccessCallback callback);
/**
* \brief Sets the local flush failure callback
*
* This callback will be called when local message production fails during a flush() operation.
* Failure errors are typically payload too large, unknown topic or unknown partition.
* Note that if the callback returns false, the message will be dropped from the buffer,
* otherwise it will be re-enqueued for later retry subject to the message retry count.
*
* \param callback
*
* \warning Do not call any method on the BufferedProducer while inside this callback
*/
void set_flush_failure_callback(FlushFailureCallback callback);
/**
* \brief Sets the local flush termination callback
*
* This callback will be called when local message production fails during a flush() operation after
* all previous flush attempts have failed. The message will be dropped after this callback.
*
* \param callback
*
* \remark If the application only tracks dropped messages, the set_flush_failure_callback() should not be set.
*
* \warning Do not call any method on the BufferedProducer while inside this callback
*/
void set_flush_termination_callback(FlushTerminationCallback callback);
/**
* \brief Sets the local queue full error callback
*
* This callback will be called when local message production fails during a produce() operation according to the
* set_queue_full_notification() setting.
*
* \param callback
*
* \warning Do not call any method on the BufferedProducer while inside this callback
*/
void set_queue_full_callback(QueueFullCallback callback);
struct TestParameters {
bool force_delivery_error_;
bool force_produce_error_;
};
protected:
//For testing purposes only
#ifdef KAFKA_TEST_INSTANCE
void set_test_parameters(TestParameters *test_params) {
test_params_ = test_params;
}
TestParameters* get_test_parameters() {
return test_params_;
}
#else
TestParameters* get_test_parameters() {
return nullptr;
}
#endif
private:
enum class SenderType { Sync, Async };
enum class QueueKind { Retry, Produce };
enum class FlushAction { DontFlush, DoFlush };
enum class Threads { All, Current };
// Simple RAII type which increments a counter on construction and
// decrements it on destruction, meant to be used as reference counting.
template <typename T>
struct CounterGuard{
CounterGuard(std::atomic<T>& counter)
: counter_(counter) {
++counter_;
}
~CounterGuard() { --counter_; }
std::atomic<T>& counter_;
};
// If the application enables retry logic, this object is passed
// as internal (opaque) data with each message, so that it can keep
// track of each failed attempt. Only a single tracker will be
// instantiated and it's lifetime will be the same as the message it
// belongs to.
struct Tracker : public Internal {
Tracker(SenderType sender, size_t num_retries)
: sender_(sender),
num_retries_(num_retries) {
}
// Creates a new promise for synchronizing with the
// on_delivery_report() callback. For synchronous producers only.
void prepare_to_retry() {
if (sender_ == SenderType::Sync) {
retry_promise_ = std::promise<bool>();
}
}
// Waits for the on_delivery_report() callback and determines if this message
// should be retried. This call will block until on_delivery_report() executes.
// For synchronous producers only.
bool retry_again() {
if (sender_ == SenderType::Sync) {
return retry_promise_.get_future().get();
}
return false;
}
// Signal the synchronous producer if the message should be retried or not.
// Called from inside on_delivery_report(). For synchronous producers only.
void should_retry(bool value) const {
if (sender_ == SenderType::Sync) {
try {
retry_promise_.set_value(value);
}
catch (const std::future_error&) {
//Promise has already been set once.
}
}
}
void set_sender_type(SenderType type) {
sender_ = type;
}
SenderType get_sender_type() const {
return sender_;
}
bool has_retries_left() const {
return num_retries_ > 0;
}
void decrement_retries() {
if (num_retries_ > 0) {
--num_retries_;
}
}
private:
SenderType sender_;
mutable std::promise<bool> retry_promise_;
size_t num_retries_;
};
using TrackerPtr = std::shared_ptr<Tracker>;
// The AckMonitor is responsible for properly counting the
// outstanding unacknowledged messages for each thread as well
// as the total acks. Counting acks on a per-thread basis is
// critical in a multi-threaded producer since we don't want one
// producer having to wait for all concurrent pending acks. Each
// producer should only wait for his own acks.
struct AckMonitor
{
// Increments the number of sent acks
void increment_pending_acks() {
while (!flag_.test_and_set()) {
//save the last ack number for this thread so we only
//wait up to this number.
last_ack_[std::this_thread::get_id()] = ++sent_acks_;
flag_.clear();
break;
}
}
// Increments the number of received acks,
// reducing the total pending acks.
void decrement_pending_acks() {
while (!flag_.test_and_set()) {
++received_acks_;
flag_.clear();
break;
}
}
// Returns true if there are any pending acks overall.
bool has_pending_acks() const {
return get_pending_acks() > 0;
}
// Returns true if there are any pending acks on this thread.
bool has_current_thread_pending_acks() const {
return get_current_thread_pending_acks() > 0;
}
// Returns total pending acks. This is the difference between
// total produced and total received.
ssize_t get_pending_acks() const {
ssize_t rc = 0;
while (!flag_.test_and_set()) {
rc = get_pending_acks_impl();
flag_.clear();
break;
}
return rc;
}
// Returns the total pending acks for this thread
ssize_t get_current_thread_pending_acks() const {
ssize_t rc = 0;
while (!flag_.test_and_set()) {
rc = get_current_thread_pending_acks_impl();
flag_.clear();
break;
}
return rc;
}
private:
ssize_t get_pending_acks_impl() const {
return (sent_acks_ - received_acks_);
}
ssize_t get_current_thread_pending_acks_impl() const {
auto it = last_ack_.find(std::this_thread::get_id());
if (it != last_ack_.end()) {
return (it->second > received_acks_) ? it->second - received_acks_ : 0;
}
return 0;
}
mutable std::atomic_flag flag_{0};
ssize_t sent_acks_{0};
ssize_t received_acks_{0};
std::map<std::thread::id, ssize_t> last_ack_; //last ack number expected for this thread
};
// Returns existing tracker or creates new one
template <typename BuilderType>
TrackerPtr add_tracker(SenderType sender, BuilderType& builder) {
if (enable_message_retries_) {
if (!builder.internal()) {
// Add message tracker only if it hasn't been added before
builder.internal(std::make_shared<Tracker>(sender, max_number_retries_));
return std::static_pointer_cast<Tracker>(builder.internal());
}
// Return existing tracker
TrackerPtr tracker = std::static_pointer_cast<Tracker>(builder.internal());
// Update the sender type. Since a message could have been initially produced
// asynchronously but then flushed synchronously (or vice-versa), the sender
// type should always reflect the latest retry mechanism.
tracker->set_sender_type(sender);
return tracker;
}
return nullptr;
}
template <typename BuilderType>
void do_add_message(BuilderType&& builder, QueueKind queue_kind, FlushAction flush_action);
template <typename BuilderType>
void produce_message(BuilderType&& builder);
bool sync_produce(const MessageBuilder& builder, std::chrono::milliseconds timeout, bool throw_on_error);
Configuration prepare_configuration(Configuration config);
void on_delivery_report(const Message& message);
template <typename BuilderType>
void async_produce(BuilderType&& message, bool throw_on_error);
static void swap_queues(QueueType & queue1, QueueType & queue2, std::mutex & mutex);
bool wait_for_acks_impl(Threads threads, std::chrono::milliseconds timeout);
// Static members
static const std::chrono::milliseconds infinite_timeout;
static const std::chrono::milliseconds no_timeout;
// Members
Producer producer_;
QueueType messages_;
QueueType retry_messages_;
mutable std::mutex mutex_;
mutable std::mutex retry_mutex_;
ProduceSuccessCallback produce_success_callback_;
ProduceFailureCallback produce_failure_callback_;
ProduceTerminationCallback produce_termination_callback_;
FlushFailureCallback flush_failure_callback_;
FlushTerminationCallback flush_termination_callback_;
QueueFullCallback queue_full_callback_;
ssize_t max_buffer_size_{-1};
FlushMethod flush_method_{FlushMethod::Sync};
AckMonitor ack_monitor_;
std::atomic<size_t> flushes_in_progress_{0};
std::atomic<size_t> total_messages_produced_{0};
std::atomic<size_t> total_messages_dropped_{0};
int max_number_retries_{0};
bool enable_message_retries_{false};
QueueFullNotification queue_full_notification_{QueueFullNotification::None};
#ifdef KAFKA_TEST_INSTANCE
TestParameters* test_params_;
#endif
};
// Full blocking wait as per RdKafka
template <typename BufferType, typename Allocator>
const std::chrono::milliseconds
BufferedProducer<BufferType, Allocator>::infinite_timeout = std::chrono::milliseconds(-1);
template <typename BufferType, typename Allocator>
const std::chrono::milliseconds
BufferedProducer<BufferType, Allocator>::no_timeout = std::chrono::milliseconds::zero();
template <typename BufferType>
Producer::PayloadPolicy get_default_payload_policy() {
return Producer::PayloadPolicy::COPY_PAYLOAD;
}
template <> inline
Producer::PayloadPolicy get_default_payload_policy<Buffer>() {
return Producer::PayloadPolicy::PASSTHROUGH_PAYLOAD;
}
template <typename BufferType, typename Allocator>
BufferedProducer<BufferType, Allocator>::BufferedProducer(Configuration config,
const Allocator& alloc)
: producer_(prepare_configuration(std::move(config))),
messages_(alloc),
retry_messages_(alloc) {
producer_.set_payload_policy(get_default_payload_policy<BufferType>());
#ifdef KAFKA_TEST_INSTANCE
test_params_ = nullptr;
#endif
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::add_message(const MessageBuilder& builder) {
add_message(Builder(builder)); //make ConcreteBuilder
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::add_message(Builder builder) {
add_tracker(SenderType::Async, builder);
//post message unto the producer queue
do_add_message(move(builder), QueueKind::Produce, FlushAction::DoFlush);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::produce(const MessageBuilder& builder) {
if (enable_message_retries_) {
//Adding a retry tracker requires copying the builder since
//we cannot modify the original instance. Cloning is a fast operation
//since the MessageBuilder class holds pointers to data only.
MessageBuilder builder_clone(builder.clone());
add_tracker(SenderType::Async, builder_clone);
async_produce(builder_clone, true);
}
else {
async_produce(builder, true);
}
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::sync_produce(const MessageBuilder& builder) {
sync_produce(builder, infinite_timeout, true);
}
template <typename BufferType, typename Allocator>
bool BufferedProducer<BufferType, Allocator>::sync_produce(const MessageBuilder& builder,
std::chrono::milliseconds timeout) {
return sync_produce(builder, infinite_timeout, true);
}
template <typename BufferType, typename Allocator>
bool BufferedProducer<BufferType, Allocator>::sync_produce(const MessageBuilder& builder,
std::chrono::milliseconds timeout,
bool throw_on_error) {
if (enable_message_retries_) {
//Adding a retry tracker requires copying the builder since
//we cannot modify the original instance. Cloning is a fast operation
//since the MessageBuilder class holds pointers to data only.
MessageBuilder builder_clone(builder.clone());
TrackerPtr tracker = add_tracker(SenderType::Sync, builder_clone);
// produce until we succeed or we reach max retry limit
auto endTime = std::chrono::steady_clock::now() + timeout;
do {
try {
tracker->prepare_to_retry();
produce_message(builder_clone);
//Wait w/o timeout since we must get the ack to avoid a race condition.
//Otherwise retry_again() will block as the producer won't get flushed
//and the delivery callback will never be invoked.
wait_for_current_thread_acks();
}
catch (const HandleException& ex) {
// If we have a flush failure callback and it returns true, we retry producing this message later
CallbackInvoker<FlushFailureCallback> callback("flush failure", flush_failure_callback_, &producer_);
if (!callback || callback(builder, ex.get_error())) {
if (tracker && tracker->has_retries_left()) {
tracker->decrement_retries();
continue;
}
}
++total_messages_dropped_;
// Call the flush termination callback
CallbackInvoker<FlushTerminationCallback>("flush termination", flush_termination_callback_, &producer_)
(builder, ex.get_error());
if (throw_on_error) {
throw;
}
break;
}
}
while (tracker->retry_again() &&
((timeout == infinite_timeout) ||
(std::chrono::steady_clock::now() >= endTime)));
return !tracker->has_retries_left();
}
else {
// produce once
try {
produce_message(builder);
wait_for_current_thread_acks(timeout);
return !ack_monitor_.has_current_thread_pending_acks();
}
catch (const HandleException& ex) {
++total_messages_dropped_;
// Call the flush termination callback
CallbackInvoker<FlushTerminationCallback>("flush termination", flush_termination_callback_, &producer_)
(builder, ex.get_error());
if (throw_on_error) {
throw;
}
}
}
return false;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::produce(const Message& message) {
async_produce(MessageBuilder(message), true);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::async_flush() {
flush(no_timeout, false);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::flush(bool preserve_order) {
flush(infinite_timeout, preserve_order);
}
template <typename BufferType, typename Allocator>
bool BufferedProducer<BufferType, Allocator>::flush(std::chrono::milliseconds timeout,
bool preserve_order) {
CounterGuard<size_t> counter_guard(flushes_in_progress_);
auto queue_flusher = [timeout, preserve_order, this]
(QueueType& queue, std::mutex & mutex)->void
{
QueueType flush_queue; // flush from temporary queue
swap_queues(queue, flush_queue, mutex);
//Produce one message at a time and wait for acks until queue is empty
while (!flush_queue.empty()) {
if (preserve_order) {
//When preserving order, we must ensure that each message
//gets delivered before producing the next one.
sync_produce(flush_queue.front(), timeout, false);
}
else {
//Produce as fast as possible w/o waiting. If one or more
//messages fail, they will be re-enqueued for retry
//on the next flush cycle, which causes re-ordering.
async_produce(flush_queue.front(), false);
}
flush_queue.pop_front();
}
};
//Produce retry queue first since these messages were produced first.
queue_flusher(retry_messages_, retry_mutex_);
//Produce recently enqueued messages
queue_flusher(messages_, mutex_);
if (!preserve_order) {
//Wait for acks from the messages produced above via async_produce
wait_for_current_thread_acks(timeout);
}
return !ack_monitor_.has_current_thread_pending_acks();
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::wait_for_acks() {
//block until all acks have been received
wait_for_acks_impl(Threads::All, infinite_timeout);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::wait_for_current_thread_acks() {
//block until all acks from the current thread have been received
wait_for_acks_impl(Threads::Current, infinite_timeout);
}
template <typename BufferType, typename Allocator>
bool BufferedProducer<BufferType, Allocator>::wait_for_acks(std::chrono::milliseconds timeout) {
//block until all acks have been received
return wait_for_acks_impl(Threads::All, timeout);
}
template <typename BufferType, typename Allocator>
bool BufferedProducer<BufferType, Allocator>::wait_for_current_thread_acks(std::chrono::milliseconds timeout) {
//block until all acks from the current thread have been received
return wait_for_acks_impl(Threads::Current, timeout);
}
template <typename BufferType, typename Allocator>
bool BufferedProducer<BufferType, Allocator>::wait_for_acks_impl(Threads threads,
std::chrono::milliseconds timeout) {
auto remaining = timeout;
auto start_time = std::chrono::high_resolution_clock::now();
bool pending_acks = true;
do {
try {
producer_.flush(remaining);
}
catch (const HandleException& ex) {
// If we just hit the timeout, keep going, otherwise re-throw
if (ex.get_error() == RD_KAFKA_RESP_ERR__TIMED_OUT) {
// There is no time remaining
pending_acks = (threads == Threads::All) ?
ack_monitor_.has_pending_acks() :
ack_monitor_.has_current_thread_pending_acks();
return !pending_acks;
}
else {
throw;
}
}
// calculate remaining time
remaining = timeout - std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::high_resolution_clock::now() - start_time);
pending_acks = (threads == Threads::All) ?
ack_monitor_.has_pending_acks() :
ack_monitor_.has_current_thread_pending_acks();
} while (pending_acks && ((remaining.count() > 0) || (timeout == infinite_timeout)));
return !pending_acks;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::clear() {
QueueType tmp;
swap_queues(messages_, tmp, mutex_);
QueueType retry_tmp;
swap_queues(retry_messages_, retry_tmp, retry_mutex_);
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_buffer_size() const {
size_t size = 0;
{
std::lock_guard<std::mutex> lock(mutex_);
size += messages_.size();
}
{
std::lock_guard<std::mutex> lock(retry_mutex_);
size += retry_messages_.size();
}
return size;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_max_buffer_size(ssize_t max_buffer_size) {
if (max_buffer_size < -1) {
throw Exception("Invalid buffer size.");
}
max_buffer_size_ = max_buffer_size;
}
template <typename BufferType, typename Allocator>
ssize_t BufferedProducer<BufferType, Allocator>::get_max_buffer_size() const {
return max_buffer_size_;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_flush_method(FlushMethod method) {
flush_method_ = method;
}
template <typename BufferType, typename Allocator>
typename BufferedProducer<BufferType, Allocator>::FlushMethod
BufferedProducer<BufferType, Allocator>::get_flush_method() const {
return flush_method_;
}
template <typename BufferType, typename Allocator>
template <typename BuilderType>
void BufferedProducer<BufferType, Allocator>::do_add_message(BuilderType&& builder,
QueueKind queue_kind,
FlushAction flush_action) {
if (queue_kind == QueueKind::Retry) {
std::lock_guard<std::mutex> lock(retry_mutex_);
retry_messages_.emplace_back(std::forward<BuilderType>(builder));
}
else {
std::lock_guard<std::mutex> lock(mutex_);
messages_.emplace_back(std::forward<BuilderType>(builder));
}
// Flush the queues only if a produced message is added. Retry messages may be added
// from on_delivery_report() during which flush()/async_flush() cannot be called.
if (queue_kind == QueueKind::Produce &&
flush_action == FlushAction::DoFlush &&
(max_buffer_size_ >= 0) &&
(max_buffer_size_ <= (ssize_t)get_buffer_size())) {
if (flush_method_ == FlushMethod::Sync) {
flush();
}
else {
async_flush();
}
}
}
template <typename BufferType, typename Allocator>
Producer& BufferedProducer<BufferType, Allocator>::get_producer() {
return producer_;
}
template <typename BufferType, typename Allocator>
const Producer& BufferedProducer<BufferType, Allocator>::get_producer() const {
return producer_;
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_pending_acks() const {
return ack_monitor_.get_pending_acks();
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_current_thread_pending_acks() const {
return ack_monitor_.get_current_thread_pending_acks();
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_total_messages_produced() const {
return total_messages_produced_;
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_total_messages_dropped() const {
return total_messages_dropped_;
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_flushes_in_progress() const {
return flushes_in_progress_;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_max_number_retries(size_t max_number_retries) {
if (!enable_message_retries_ && (max_number_retries > 0)) {
enable_message_retries_ = true; //enable once
}
max_number_retries_ = max_number_retries;
}
template <typename BufferType, typename Allocator>
size_t BufferedProducer<BufferType, Allocator>::get_max_number_retries() const {
return max_number_retries_;
}
template <typename BufferType, typename Allocator>
typename BufferedProducer<BufferType, Allocator>::Builder
BufferedProducer<BufferType, Allocator>::make_builder(std::string topic) {
return Builder(std::move(topic));
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_queue_full_notification(QueueFullNotification notification) {
queue_full_notification_ = notification;
}
template <typename BufferType, typename Allocator>
typename BufferedProducer<BufferType, Allocator>::QueueFullNotification
BufferedProducer<BufferType, Allocator>::get_queue_full_notification() const {
return queue_full_notification_;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_produce_failure_callback(ProduceFailureCallback callback) {
produce_failure_callback_ = std::move(callback);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_produce_termination_callback(ProduceTerminationCallback callback) {
produce_termination_callback_ = std::move(callback);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_produce_success_callback(ProduceSuccessCallback callback) {
produce_success_callback_ = std::move(callback);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_flush_failure_callback(FlushFailureCallback callback) {
flush_failure_callback_ = std::move(callback);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_flush_termination_callback(FlushTerminationCallback callback) {
flush_termination_callback_ = std::move(callback);
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::set_queue_full_callback(QueueFullCallback callback) {
queue_full_callback_ = std::move(callback);
}
template <typename BufferType, typename Allocator>
template <typename BuilderType>
void BufferedProducer<BufferType, Allocator>::produce_message(BuilderType&& builder) {
using builder_type = typename std::decay<BuilderType>::type;
bool queue_full_notify = queue_full_notification_ != QueueFullNotification::None;
while (true) {
try {
MessageInternalGuard<builder_type> internal_guard(const_cast<builder_type&>(builder));
producer_.produce(builder);
internal_guard.release();
// Sent successfully
ack_monitor_.increment_pending_acks();
break;
}
catch (const HandleException& ex) {
if (ex.get_error() == RD_KAFKA_RESP_ERR__QUEUE_FULL) {
// If the output queue is full, then just poll
producer_.poll();
// Notify application so it can slow-down production
if (queue_full_notify) {
queue_full_notify = queue_full_notification_ == QueueFullNotification::EachOccurence;
CallbackInvoker<QueueFullCallback>("queue full", queue_full_callback_, &producer_)(builder);
}
}
else {
throw;
}
}
}
}
template <typename BufferType, typename Allocator>
template <typename BuilderType>
void BufferedProducer<BufferType, Allocator>::async_produce(BuilderType&& builder, bool throw_on_error) {
try {
TestParameters* test_params = get_test_parameters();
if (test_params && test_params->force_produce_error_) {
throw HandleException(Error(RD_KAFKA_RESP_ERR_UNKNOWN));
}
produce_message(builder);
}
catch (const HandleException& ex) {
// If we have a flush failure callback and it returns true, we retry producing this message later
CallbackInvoker<FlushFailureCallback> callback("flush failure", flush_failure_callback_, &producer_);
if (!callback || callback(builder, ex.get_error())) {
TrackerPtr tracker = std::static_pointer_cast<Tracker>(builder.internal());
if (tracker && tracker->has_retries_left()) {
tracker->decrement_retries();
//Post message unto the retry queue. This queue has higher priority and will be
//flushed before the producer queue to preserve original message order.
//We don't flush now since we just had an error while producing.
do_add_message(std::forward<BuilderType>(builder), QueueKind::Retry, FlushAction::DontFlush);
return;
}
}
++total_messages_dropped_;
// Call the flush termination callback
CallbackInvoker<FlushTerminationCallback>("flush termination", flush_termination_callback_, &producer_)
(builder, ex.get_error());
if (throw_on_error) {
throw;
}
}
}
template <typename BufferType, typename Allocator>
Configuration BufferedProducer<BufferType, Allocator>::prepare_configuration(Configuration config) {
using std::placeholders::_2;
auto callback = std::bind(&BufferedProducer<BufferType, Allocator>::on_delivery_report, this, _2);
config.set_delivery_report_callback(std::move(callback));
return config;
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::on_delivery_report(const Message& message) {
TestParameters* test_params = get_test_parameters();
//Get tracker if present
TrackerPtr tracker =
enable_message_retries_ ?
std::static_pointer_cast<Tracker>(MessageInternal::load(const_cast<Message&>(message))->get_internal()) :
nullptr;
bool retry = false;
if (message.get_error() || (test_params && test_params->force_delivery_error_)) {
// We should produce this message again if we don't have a produce failure callback
// or we have one but it returns true (indicating error is re-tryable)
CallbackInvoker<ProduceFailureCallback> callback("produce failure", produce_failure_callback_, &producer_);
if (!callback || callback(message)) {
// Check if we have reached the maximum retry limit
if (tracker && tracker->has_retries_left()) {
tracker->decrement_retries();
//If the sender is asynchronous, the message is re-enqueued. If the sender is
//synchronous, we simply notify via Tracker::should_retry() below.
if (tracker->get_sender_type() == SenderType::Async) {
//Post message unto the retry queue. This queue has higher priority and will be
//flushed later by the application (before the producer queue) to preserve original message order.
//We prevent flushing now since we are within a callback context.
do_add_message(Builder(message), QueueKind::Retry, FlushAction::DontFlush);
}
retry = true;
}
else {
++total_messages_dropped_;
CallbackInvoker<ProduceTerminationCallback>
("produce termination", produce_termination_callback_, &producer_)(message);
}
}
else {
++total_messages_dropped_;
CallbackInvoker<ProduceTerminationCallback>
("produce termination", produce_termination_callback_, &producer_)(message);
}
}
else {
// Successful delivery
CallbackInvoker<ProduceSuccessCallback>("delivery success", produce_success_callback_, &producer_)(message);
// Increment the total successful transmissions
++total_messages_produced_;
}
// Signal synchronous sender and unblock it since it's waiting for this ack to arrive.
if (tracker) {
tracker->should_retry(retry);
}
// Decrement the expected acks and check to prevent underflow
ack_monitor_.decrement_pending_acks();
}
template <typename BufferType, typename Allocator>
void BufferedProducer<BufferType, Allocator>::swap_queues(BufferedProducer<BufferType, Allocator>::QueueType & queue1,
BufferedProducer<BufferType, Allocator>::QueueType & queue2,
std::mutex & mutex)
{
std::lock_guard<std::mutex> lock(mutex);
std::swap(queue1, queue2);
}
} // cppkafka
#endif // CPPKAFKA_BUFFERED_PRODUCER_H