lf_csv - creates csv for graph data

pick 6ea0cec lf_csv - creates csv for graph data

    pick 2fdb937 lf_csv - creates csv for graph data
    pick 0429552 conflicts resolved in lf_graph changes
This commit is contained in:
anil-tegala
2021-07-01 18:13:30 +05:30
parent 2b3e86acfa
commit 22ce8723b7
5 changed files with 53 additions and 161 deletions

0
py-scripts/lf_csv.py Normal file
View File

View File

@@ -25,6 +25,7 @@ import pandas as pd
import pdfkit import pdfkit
import math import math
from matplotlib.colors import ListedColormap from matplotlib.colors import ListedColormap
from lf_csv import LfCSV
# internal candela references included during intial phases, to be deleted at future date # internal candela references included during intial phases, to be deleted at future date
@@ -36,7 +37,8 @@ class lf_bar_graph():
_yaxis_name="y-axis", _yaxis_name="y-axis",
_xaxis_categories=[1, 2, 3, 4, 5], _xaxis_categories=[1, 2, 3, 4, 5],
_xaxis_label=["a", "b", "c", "d", "e"], _xaxis_label=["a", "b", "c", "d", "e"],
_step_size=5, _graph_title="",
_title_size=16,
_graph_image_name="image_name", _graph_image_name="image_name",
_label=["bi-downlink", "bi-uplink", 'uplink'], _label=["bi-downlink", "bi-uplink", 'uplink'],
_color=None, _color=None,
@@ -49,14 +51,17 @@ class lf_bar_graph():
_xaxis_step=5, _xaxis_step=5,
_xticks_font = None, _xticks_font = None,
_grp_title = "", _grp_title = "",
_dpi=96): _dpi=96,
_enable_csv=True):
>>>>>>> 6dd9cef... lf_csv - creates csv for graph data
self.data_set = _data_set self.data_set = _data_set
self.xaxis_name = _xaxis_name self.xaxis_name = _xaxis_name
self.yaxis_name = _yaxis_name self.yaxis_name = _yaxis_name
self.xaxis_categories = _xaxis_categories self.xaxis_categories = _xaxis_categories
self.xaxis_label = _xaxis_label self.xaxis_label = _xaxis_label
self.step_size = _step_size self.title = _graph_title
self.title_size = _title_size
self.graph_image_name = _graph_image_name self.graph_image_name = _graph_image_name
self.label = _label self.label = _label
self.color = _color self.color = _color
@@ -69,6 +74,8 @@ class lf_bar_graph():
self.xaxis_step = _xaxis_step self.xaxis_step = _xaxis_step
self.xticks_font = _xticks_font self.xticks_font = _xticks_font
self.grp_title = _grp_title self.grp_title = _grp_title
self.enable_csv = _enable_csv
self.lf_csv = LfCSV()
def build_bar_graph(self): def build_bar_graph(self):
if self.color is None: if self.color is None:
@@ -106,24 +113,27 @@ class lf_bar_graph():
i = i + 1 i = i + 1
plt.xlabel(self.xaxis_name, fontweight='bold', fontsize=15) plt.xlabel(self.xaxis_name, fontweight='bold', fontsize=15)
plt.ylabel(self.yaxis_name, fontweight='bold', fontsize=15) plt.ylabel(self.yaxis_name, fontweight='bold', fontsize=15)
"""plt.xticks([r + self.bar_width for r in range(len(self.data_set[0]))],
self.xaxis_categories)"""
plt.xticks(np.arange(0, len(self.xaxis_categories), step=self.step_size), labels=self.xaxis_label)
plt.legend()
if self.xaxis_categories[0] == 0: if self.xaxis_categories[0] == 0:
plt.xticks(np.arange(0, len(self.xaxis_categories), step=self.xaxis_step),fontsize = self.xticks_font) plt.xticks(np.arange(0, len(self.xaxis_categories), step=self.xaxis_step),fontsize = self.xticks_font)
else: else:
plt.xticks(np.arange(0, len(self.data_set[0]), step=self.xaxis_step), self.xaxis_categories, plt.xticks(np.arange(0, len(self.data_set[0]), step=self.xaxis_step), self.xaxis_categories,
fontsize = self.xticks_font) fontsize = self.xticks_font)
plt.legend() plt.legend()
plt.suptitle(self.title, fontsize=self.title_size)
plt.title(self.grp_title) plt.title(self.grp_title)
fig = plt.gcf() fig = plt.gcf()
plt.savefig("%s.png" % self.graph_image_name, dpi=96) plt.savefig("%s.png" % self.graph_image_name, dpi=96)
plt.close() plt.close()
print("{}.png".format(self.graph_image_name)) print("{}.png".format(self.graph_image_name))
if self.enable_csv:
if self.data_set is not None:
self.lf_csv.columns = self.label
self.lf_csv.rows = self.data_set
self.lf_csv.filename = f"{self.graph_image_name}.csv"
self.lf_csv.generate_csv()
else:
print("No Dataset Found")
print("{}.csv".format(self.graph_image_name))
return "%s.png" % self.graph_image_name return "%s.png" % self.graph_image_name
@@ -135,9 +145,10 @@ class lf_scatter_graph():
_xaxis_name="x-axis", _xaxis_name="x-axis",
_yaxis_name="y-axis", _yaxis_name="y-axis",
_label=["num1", "num2"], _label=["num1", "num2"],
_graph_image_name="image_name", _graph_image_name="image_name1",
_color=["r", "y"], _color=["r", "y"],
_figsize=(9, 4)): _figsize=(9, 4),
_enable_csv=True):
self.x_data_set = _x_data_set self.x_data_set = _x_data_set
self.y_data_set = _y_data_set self.y_data_set = _y_data_set
self.xaxis_name = _xaxis_name self.xaxis_name = _xaxis_name
@@ -147,6 +158,8 @@ class lf_scatter_graph():
self.color = _color self.color = _color
self.label = _label self.label = _label
self.values = _values self.values = _values
self.enable_csv = _enable_csv
self.lf_csv = LfCSV()
def build_scatter_graph(self): def build_scatter_graph(self):
if self.color is None: if self.color is None:
@@ -171,6 +184,11 @@ class lf_scatter_graph():
plt.savefig("%s.png" % self.graph_image_name, dpi=96) plt.savefig("%s.png" % self.graph_image_name, dpi=96)
plt.close() plt.close()
print("{}.png".format(self.graph_image_name)) print("{}.png".format(self.graph_image_name))
if self.enable_csv:
self.lf_csv.columns = self.label
self.lf_csv.rows = self.y_data_set
self.lf_csv.filename = f"{self.graph_image_name}.csv"
self.lf_csv.generate_csv()
return "%s.png" % self.graph_image_name return "%s.png" % self.graph_image_name
@@ -181,9 +199,10 @@ class lf_stacked_graph():
_xaxis_name="Stations", _xaxis_name="Stations",
_yaxis_name="Numbers", _yaxis_name="Numbers",
_label=['Success', 'Fail'], _label=['Success', 'Fail'],
_graph_image_name="image_name", _graph_image_name="image_name2",
_color=["b", "g"], _color=["b", "g"],
_figsize=(9, 4)): _figsize=(9, 4),
_enable_csv=True):
self.data_set = _data_set # [x_axis,y1_axis,y2_axis] self.data_set = _data_set # [x_axis,y1_axis,y2_axis]
self.xaxis_name = _xaxis_name self.xaxis_name = _xaxis_name
self.yaxis_name = _yaxis_name self.yaxis_name = _yaxis_name
@@ -191,6 +210,8 @@ class lf_stacked_graph():
self.graph_image_name = _graph_image_name self.graph_image_name = _graph_image_name
self.label = _label self.label = _label
self.color = _color self.color = _color
self.enable_csv = _enable_csv
self.lf_csv = LfCSV()
def build_stacked_graph(self): def build_stacked_graph(self):
fig = plt.subplots(figsize=self.figsize) fig = plt.subplots(figsize=self.figsize)
@@ -208,7 +229,11 @@ class lf_stacked_graph():
plt.savefig("%s.png" % (self.graph_image_name), dpi=96) plt.savefig("%s.png" % (self.graph_image_name), dpi=96)
plt.close() plt.close()
print("{}.png".format(self.graph_image_name)) print("{}.png".format(self.graph_image_name))
if self.enable_csv:
self.lf_csv.columns = self.label
self.lf_csv.rows = self.data_set
self.lf_csv.filename = f"{self.graph_image_name}.csv"
self.lf_csv.generate_csv()
return "%s.png" % (self.graph_image_name) return "%s.png" % (self.graph_image_name)
@@ -221,10 +246,11 @@ class lf_horizontal_stacked_graph():
_unit="%", _unit="%",
_xaxis_name="Stations", _xaxis_name="Stations",
_label=['Success', 'Fail'], _label=['Success', 'Fail'],
_graph_image_name="image_name", _graph_image_name="image_name3",
_color=["success", "Fail"], _color=["success", "Fail"],
_figsize=(9, 4), _figsize=(9, 4),
_disable_xaxis=False): _disable_xaxis=False,
_enable_csv=True):
self.unit = _unit self.unit = _unit
self.seg = _seg self.seg = _seg
self.xaxis_set1 = _xaxis_set1 self.xaxis_set1 = _xaxis_set1
@@ -236,6 +262,8 @@ class lf_horizontal_stacked_graph():
self.label = _label self.label = _label
self.color = _color self.color = _color
self.disable_xaxis = _disable_xaxis self.disable_xaxis = _disable_xaxis
self.enable_csv = _enable_csv
self.lf_csv = LfCSV()
def build_horizontal_stacked_graph(self): def build_horizontal_stacked_graph(self):
def sumzip(items): def sumzip(items):
@@ -277,7 +305,11 @@ class lf_horizontal_stacked_graph():
plt.savefig("%s.png" % self.graph_image_name, dpi=96) plt.savefig("%s.png" % self.graph_image_name, dpi=96)
plt.close() plt.close()
print("{}.png".format(self.graph_image_name)) print("{}.png".format(self.graph_image_name))
# if self.enable_csv:
# self.lf_csv.columns = self.label
# self.lf_csv.rows = self.data_set
# self.lf_csv.filename = f"{self.graph_image_name}.csv"
# self.lf_csv.generate_csv()
return "%s.png" % self.graph_image_name return "%s.png" % self.graph_image_name

View File

@@ -146,6 +146,8 @@ class lf_report():
print("graph_src_file: {}".format(graph_src_file)) print("graph_src_file: {}".format(graph_src_file))
print("graph_dst_file: {}".format(graph_dst_file)) print("graph_dst_file: {}".format(graph_dst_file))
shutil.move(graph_src_file, graph_dst_file) shutil.move(graph_src_file, graph_dst_file)
def move_csv_file(self):
csv_src_file = str(self.fil)
def set_path(self,_path): def set_path(self,_path):
self.path = _path self.path = _path

View File

@@ -96,7 +96,7 @@ if __name__ == "__main__":
_xaxis_categories=x_axis_values, _xaxis_categories=x_axis_values,
_graph_image_name="Bi-single_radio_2.4GHz", _graph_image_name="Bi-single_radio_2.4GHz",
_label=["bi-downlink", "bi-uplink", 'uplink'], _label=["bi-downlink", "bi-uplink", 'uplink'],
_color=None, _color=['darkorange', 'forestgreen','blueviolet'],
_color_edge='red') _color_edge='red')
graph_png = graph.build_bar_graph() graph_png = graph.build_bar_graph()

View File

@@ -1,142 +0,0 @@
'''
------------------------------------------------------------------------------------
Throughput QOS report evaluates the throughput for a number of clients which are running
traffic with a particular type of service Video | Voice | BE | BK
------------------------------------------------------------------------------------
'''
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd
import pdfkit
from lf_report import lf_report
from lf_graph import lf_bar_graph
def table(report, title, data):
# creating table
report.set_table_title(title)
report.build_table_title()
report.set_table_dataframe(data)
report.build_table()
def grph(report, data_set=None, xaxis_name="stations", yaxis_name="Throughput 2 (Mbps)",
xaxis_categories=None, label=None, graph_image_name=""):
# creating bar graph
report.set_graph_title(graph_image_name)
report.build_graph_title()
graph = lf_bar_graph(_data_set=data_set,
_xaxis_name=xaxis_name,
_yaxis_name=yaxis_name,
_xaxis_categories=xaxis_categories,
_graph_image_name=graph_image_name,
_label=label,
_color=None,
_color_edge='red')
graph_png = graph.build_bar_graph()
print("graph name {}".format(graph_png))
report.set_graph_image(graph_png)
report.move_graph_image()
report.build_graph()
def generate_report(util, sta_num, bps_rx_a, bps_rx_b, tbl_title, grp_title, upload=1000000, download=1000000):
# report generation main function
rx_a = []
rx_b = []
pas_fail_up = []
pas_fail_down = []
thrp_b = upload * len(sta_num) # get overall upload values
thrp_a = download * len(sta_num) ## get overall download values
print(f"given upload--{thrp_b} and download--{thrp_a} values")
index = -1
for a in bps_rx_a:
index += 1
if len(a):
rx_a.append(f'min: {min(a)} | max: {max(a)} | avg: {sum(a) / len(a)}')
if thrp_a:
print(
f"getting overall download values '{index}'----- {sum(a)} \n {(thrp_a / 100) * (100 - int(util[index]))}")
if (thrp_a / 100) * (100 - int(util[index])) <= sum(a):
pas_fail_down.append("PASS")
else:
pas_fail_down.append("FAIL")
else:
pas_fail_down.append("NA")
rx_a.append(0)
if len(bps_rx_b[index]):
rx_b.append(f'min: {min(bps_rx_b[index])} | max: {max(bps_rx_b[index])} | '
f'avg: {(sum(bps_rx_b[index]) / len(bps_rx_b[index])):.2f}')
if thrp_b:
print(
f"getting overall upload values '{index}'----- {sum(bps_rx_b[index])} \n {(thrp_b / 100) * (100 - int(util[index]))}")
if (thrp_b / 100) * (100 - int(util[index])) <= sum(bps_rx_b[index]):
pas_fail_up.append("PASS")
else:
pas_fail_up.append("FAIL")
else:
pas_fail_up.append("NA")
rx_b.append(0)
util[index] = f'{util[index]}%' # append % to the util values
overall_tab = pd.DataFrame({
'Channel Utilization (%)': util, "No.of.clients": [len(sta_num)] * len(util),
'Speed (mbps)': [f'upload: {upload} | download: {download}'] * len(util),
'Upload (mbps)': rx_b, 'Download (mbps)': rx_a
})
print(f"overall table \n{overall_tab}")
pasfail_tab = pd.DataFrame({
'Channel Utilization (%)': util,
'Upload': pas_fail_up,
'Download': pas_fail_down
})
print(f"pass-fail table \n {pasfail_tab}")
report = lf_report()
report_path = report.get_path()
report_path_date_time = report.get_path_date_time()
print("path: {}".format(report_path))
print("path_date_time: {}".format(report_path_date_time))
report.set_title(tbl_title)
report.build_banner()
# objective title and description
report.set_obj_html(_obj_title="Objective",
_obj="Through this test we can evaluate the throughput for given number of clients which"
"are running the traffic with a particular TOS i.e BK,BE,VI,VO")
report.build_objective()
table(report, "Overall throughput", overall_tab)
table(report, "Throughput Pass/Fail", pasfail_tab)
if download:
grph(report,
data_set=[[min(i) for i in bps_rx_a], [max(i) for i in bps_rx_a], [sum(i) / len(i) for i in bps_rx_a]],
xaxis_name="Load", yaxis_name="Throughput (Mbps)",
xaxis_categories=util, label=["min", "max", 'avg'], graph_image_name="Throughput_download")
if upload:
grph(report,
data_set=[[min(i) for i in bps_rx_b], [max(i) for i in bps_rx_b], [sum(i) / len(i) for i in bps_rx_b]],
xaxis_name="Load", yaxis_name="Throughput (Mbps)",
xaxis_categories=util, label=["min", "max", 'avg'], graph_image_name="Throughput_upload")
for i in range(len(util)):
if download:
grph(report, data_set=[bps_rx_a[i]], xaxis_name="stations",
yaxis_name="Throughput (Mbps)", xaxis_categories=range(0, len(sta_num)),
label=[util[i]], graph_image_name=f"client-Throughput-download_{i}")
if upload:
grph(report, data_set=[bps_rx_b[i]], xaxis_name="stations",
yaxis_name="Throughput (Mbps)", xaxis_categories=range(0, len(sta_num)),
label=[util[i]], graph_image_name=f"client-Throughput-upload_{i}")
html_file = report.write_html()
print("returned file {}".format(html_file))
report.write_pdf()
# report.generate_report()