mirror of
https://github.com/Telecominfraproject/wlan-lanforge-scripts.git
synced 2025-11-01 11:18:03 +00:00
lf_csv - creates csv for graph data
pick 6ea0cec lf_csv - creates csv for graph data
pick 2fdb937 lf_csv - creates csv for graph data
pick 0429552 conflicts resolved in lf_graph changes
This commit is contained in:
0
py-scripts/lf_csv.py
Normal file
0
py-scripts/lf_csv.py
Normal file
@@ -25,6 +25,7 @@ import pandas as pd
|
||||
import pdfkit
|
||||
import math
|
||||
from matplotlib.colors import ListedColormap
|
||||
from lf_csv import LfCSV
|
||||
|
||||
|
||||
# internal candela references included during intial phases, to be deleted at future date
|
||||
@@ -36,7 +37,8 @@ class lf_bar_graph():
|
||||
_yaxis_name="y-axis",
|
||||
_xaxis_categories=[1, 2, 3, 4, 5],
|
||||
_xaxis_label=["a", "b", "c", "d", "e"],
|
||||
_step_size=5,
|
||||
_graph_title="",
|
||||
_title_size=16,
|
||||
_graph_image_name="image_name",
|
||||
_label=["bi-downlink", "bi-uplink", 'uplink'],
|
||||
_color=None,
|
||||
@@ -49,14 +51,17 @@ class lf_bar_graph():
|
||||
_xaxis_step=5,
|
||||
_xticks_font = None,
|
||||
_grp_title = "",
|
||||
_dpi=96):
|
||||
_dpi=96,
|
||||
_enable_csv=True):
|
||||
>>>>>>> 6dd9cef... lf_csv - creates csv for graph data
|
||||
|
||||
self.data_set = _data_set
|
||||
self.xaxis_name = _xaxis_name
|
||||
self.yaxis_name = _yaxis_name
|
||||
self.xaxis_categories = _xaxis_categories
|
||||
self.xaxis_label = _xaxis_label
|
||||
self.step_size = _step_size
|
||||
self.title = _graph_title
|
||||
self.title_size = _title_size
|
||||
self.graph_image_name = _graph_image_name
|
||||
self.label = _label
|
||||
self.color = _color
|
||||
@@ -69,6 +74,8 @@ class lf_bar_graph():
|
||||
self.xaxis_step = _xaxis_step
|
||||
self.xticks_font = _xticks_font
|
||||
self.grp_title = _grp_title
|
||||
self.enable_csv = _enable_csv
|
||||
self.lf_csv = LfCSV()
|
||||
|
||||
def build_bar_graph(self):
|
||||
if self.color is None:
|
||||
@@ -106,24 +113,27 @@ class lf_bar_graph():
|
||||
i = i + 1
|
||||
plt.xlabel(self.xaxis_name, fontweight='bold', fontsize=15)
|
||||
plt.ylabel(self.yaxis_name, fontweight='bold', fontsize=15)
|
||||
"""plt.xticks([r + self.bar_width for r in range(len(self.data_set[0]))],
|
||||
self.xaxis_categories)"""
|
||||
plt.xticks(np.arange(0, len(self.xaxis_categories), step=self.step_size), labels=self.xaxis_label)
|
||||
plt.legend()
|
||||
|
||||
if self.xaxis_categories[0] == 0:
|
||||
plt.xticks(np.arange(0, len(self.xaxis_categories), step=self.xaxis_step),fontsize = self.xticks_font)
|
||||
else:
|
||||
plt.xticks(np.arange(0, len(self.data_set[0]), step=self.xaxis_step), self.xaxis_categories,
|
||||
fontsize = self.xticks_font)
|
||||
|
||||
plt.legend()
|
||||
plt.suptitle(self.title, fontsize=self.title_size)
|
||||
plt.title(self.grp_title)
|
||||
fig = plt.gcf()
|
||||
plt.savefig("%s.png" % self.graph_image_name, dpi=96)
|
||||
plt.close()
|
||||
print("{}.png".format(self.graph_image_name))
|
||||
|
||||
if self.enable_csv:
|
||||
if self.data_set is not None:
|
||||
self.lf_csv.columns = self.label
|
||||
self.lf_csv.rows = self.data_set
|
||||
self.lf_csv.filename = f"{self.graph_image_name}.csv"
|
||||
self.lf_csv.generate_csv()
|
||||
else:
|
||||
print("No Dataset Found")
|
||||
print("{}.csv".format(self.graph_image_name))
|
||||
return "%s.png" % self.graph_image_name
|
||||
|
||||
|
||||
@@ -135,9 +145,10 @@ class lf_scatter_graph():
|
||||
_xaxis_name="x-axis",
|
||||
_yaxis_name="y-axis",
|
||||
_label=["num1", "num2"],
|
||||
_graph_image_name="image_name",
|
||||
_graph_image_name="image_name1",
|
||||
_color=["r", "y"],
|
||||
_figsize=(9, 4)):
|
||||
_figsize=(9, 4),
|
||||
_enable_csv=True):
|
||||
self.x_data_set = _x_data_set
|
||||
self.y_data_set = _y_data_set
|
||||
self.xaxis_name = _xaxis_name
|
||||
@@ -147,6 +158,8 @@ class lf_scatter_graph():
|
||||
self.color = _color
|
||||
self.label = _label
|
||||
self.values = _values
|
||||
self.enable_csv = _enable_csv
|
||||
self.lf_csv = LfCSV()
|
||||
|
||||
def build_scatter_graph(self):
|
||||
if self.color is None:
|
||||
@@ -171,6 +184,11 @@ class lf_scatter_graph():
|
||||
plt.savefig("%s.png" % self.graph_image_name, dpi=96)
|
||||
plt.close()
|
||||
print("{}.png".format(self.graph_image_name))
|
||||
if self.enable_csv:
|
||||
self.lf_csv.columns = self.label
|
||||
self.lf_csv.rows = self.y_data_set
|
||||
self.lf_csv.filename = f"{self.graph_image_name}.csv"
|
||||
self.lf_csv.generate_csv()
|
||||
|
||||
return "%s.png" % self.graph_image_name
|
||||
|
||||
@@ -181,9 +199,10 @@ class lf_stacked_graph():
|
||||
_xaxis_name="Stations",
|
||||
_yaxis_name="Numbers",
|
||||
_label=['Success', 'Fail'],
|
||||
_graph_image_name="image_name",
|
||||
_graph_image_name="image_name2",
|
||||
_color=["b", "g"],
|
||||
_figsize=(9, 4)):
|
||||
_figsize=(9, 4),
|
||||
_enable_csv=True):
|
||||
self.data_set = _data_set # [x_axis,y1_axis,y2_axis]
|
||||
self.xaxis_name = _xaxis_name
|
||||
self.yaxis_name = _yaxis_name
|
||||
@@ -191,6 +210,8 @@ class lf_stacked_graph():
|
||||
self.graph_image_name = _graph_image_name
|
||||
self.label = _label
|
||||
self.color = _color
|
||||
self.enable_csv = _enable_csv
|
||||
self.lf_csv = LfCSV()
|
||||
|
||||
def build_stacked_graph(self):
|
||||
fig = plt.subplots(figsize=self.figsize)
|
||||
@@ -208,7 +229,11 @@ class lf_stacked_graph():
|
||||
plt.savefig("%s.png" % (self.graph_image_name), dpi=96)
|
||||
plt.close()
|
||||
print("{}.png".format(self.graph_image_name))
|
||||
|
||||
if self.enable_csv:
|
||||
self.lf_csv.columns = self.label
|
||||
self.lf_csv.rows = self.data_set
|
||||
self.lf_csv.filename = f"{self.graph_image_name}.csv"
|
||||
self.lf_csv.generate_csv()
|
||||
return "%s.png" % (self.graph_image_name)
|
||||
|
||||
|
||||
@@ -221,10 +246,11 @@ class lf_horizontal_stacked_graph():
|
||||
_unit="%",
|
||||
_xaxis_name="Stations",
|
||||
_label=['Success', 'Fail'],
|
||||
_graph_image_name="image_name",
|
||||
_graph_image_name="image_name3",
|
||||
_color=["success", "Fail"],
|
||||
_figsize=(9, 4),
|
||||
_disable_xaxis=False):
|
||||
_disable_xaxis=False,
|
||||
_enable_csv=True):
|
||||
self.unit = _unit
|
||||
self.seg = _seg
|
||||
self.xaxis_set1 = _xaxis_set1
|
||||
@@ -236,6 +262,8 @@ class lf_horizontal_stacked_graph():
|
||||
self.label = _label
|
||||
self.color = _color
|
||||
self.disable_xaxis = _disable_xaxis
|
||||
self.enable_csv = _enable_csv
|
||||
self.lf_csv = LfCSV()
|
||||
|
||||
def build_horizontal_stacked_graph(self):
|
||||
def sumzip(items):
|
||||
@@ -277,7 +305,11 @@ class lf_horizontal_stacked_graph():
|
||||
plt.savefig("%s.png" % self.graph_image_name, dpi=96)
|
||||
plt.close()
|
||||
print("{}.png".format(self.graph_image_name))
|
||||
|
||||
# if self.enable_csv:
|
||||
# self.lf_csv.columns = self.label
|
||||
# self.lf_csv.rows = self.data_set
|
||||
# self.lf_csv.filename = f"{self.graph_image_name}.csv"
|
||||
# self.lf_csv.generate_csv()
|
||||
return "%s.png" % self.graph_image_name
|
||||
|
||||
|
||||
|
||||
@@ -146,6 +146,8 @@ class lf_report():
|
||||
print("graph_src_file: {}".format(graph_src_file))
|
||||
print("graph_dst_file: {}".format(graph_dst_file))
|
||||
shutil.move(graph_src_file, graph_dst_file)
|
||||
def move_csv_file(self):
|
||||
csv_src_file = str(self.fil)
|
||||
|
||||
def set_path(self,_path):
|
||||
self.path = _path
|
||||
|
||||
@@ -96,7 +96,7 @@ if __name__ == "__main__":
|
||||
_xaxis_categories=x_axis_values,
|
||||
_graph_image_name="Bi-single_radio_2.4GHz",
|
||||
_label=["bi-downlink", "bi-uplink", 'uplink'],
|
||||
_color=None,
|
||||
_color=['darkorange', 'forestgreen','blueviolet'],
|
||||
_color_edge='red')
|
||||
|
||||
graph_png = graph.build_bar_graph()
|
||||
|
||||
@@ -1,142 +0,0 @@
|
||||
'''
|
||||
------------------------------------------------------------------------------------
|
||||
Throughput QOS report evaluates the throughput for a number of clients which are running
|
||||
traffic with a particular type of service Video | Voice | BE | BK
|
||||
------------------------------------------------------------------------------------
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib as mpl
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pdfkit
|
||||
from lf_report import lf_report
|
||||
from lf_graph import lf_bar_graph
|
||||
|
||||
|
||||
def table(report, title, data):
|
||||
# creating table
|
||||
report.set_table_title(title)
|
||||
report.build_table_title()
|
||||
report.set_table_dataframe(data)
|
||||
report.build_table()
|
||||
|
||||
|
||||
def grph(report, data_set=None, xaxis_name="stations", yaxis_name="Throughput 2 (Mbps)",
|
||||
xaxis_categories=None, label=None, graph_image_name=""):
|
||||
# creating bar graph
|
||||
report.set_graph_title(graph_image_name)
|
||||
report.build_graph_title()
|
||||
graph = lf_bar_graph(_data_set=data_set,
|
||||
_xaxis_name=xaxis_name,
|
||||
_yaxis_name=yaxis_name,
|
||||
_xaxis_categories=xaxis_categories,
|
||||
_graph_image_name=graph_image_name,
|
||||
_label=label,
|
||||
_color=None,
|
||||
_color_edge='red')
|
||||
graph_png = graph.build_bar_graph()
|
||||
print("graph name {}".format(graph_png))
|
||||
report.set_graph_image(graph_png)
|
||||
report.move_graph_image()
|
||||
report.build_graph()
|
||||
|
||||
|
||||
def generate_report(util, sta_num, bps_rx_a, bps_rx_b, tbl_title, grp_title, upload=1000000, download=1000000):
|
||||
# report generation main function
|
||||
rx_a = []
|
||||
rx_b = []
|
||||
pas_fail_up = []
|
||||
pas_fail_down = []
|
||||
thrp_b = upload * len(sta_num) # get overall upload values
|
||||
thrp_a = download * len(sta_num) ## get overall download values
|
||||
print(f"given upload--{thrp_b} and download--{thrp_a} values")
|
||||
index = -1
|
||||
for a in bps_rx_a:
|
||||
index += 1
|
||||
if len(a):
|
||||
rx_a.append(f'min: {min(a)} | max: {max(a)} | avg: {sum(a) / len(a)}')
|
||||
if thrp_a:
|
||||
print(
|
||||
f"getting overall download values '{index}'----- {sum(a)} \n {(thrp_a / 100) * (100 - int(util[index]))}")
|
||||
if (thrp_a / 100) * (100 - int(util[index])) <= sum(a):
|
||||
pas_fail_down.append("PASS")
|
||||
else:
|
||||
pas_fail_down.append("FAIL")
|
||||
else:
|
||||
pas_fail_down.append("NA")
|
||||
rx_a.append(0)
|
||||
|
||||
if len(bps_rx_b[index]):
|
||||
rx_b.append(f'min: {min(bps_rx_b[index])} | max: {max(bps_rx_b[index])} | '
|
||||
f'avg: {(sum(bps_rx_b[index]) / len(bps_rx_b[index])):.2f}')
|
||||
|
||||
if thrp_b:
|
||||
print(
|
||||
f"getting overall upload values '{index}'----- {sum(bps_rx_b[index])} \n {(thrp_b / 100) * (100 - int(util[index]))}")
|
||||
if (thrp_b / 100) * (100 - int(util[index])) <= sum(bps_rx_b[index]):
|
||||
pas_fail_up.append("PASS")
|
||||
else:
|
||||
pas_fail_up.append("FAIL")
|
||||
else:
|
||||
pas_fail_up.append("NA")
|
||||
rx_b.append(0)
|
||||
|
||||
util[index] = f'{util[index]}%' # append % to the util values
|
||||
|
||||
overall_tab = pd.DataFrame({
|
||||
'Channel Utilization (%)': util, "No.of.clients": [len(sta_num)] * len(util),
|
||||
'Speed (mbps)': [f'upload: {upload} | download: {download}'] * len(util),
|
||||
'Upload (mbps)': rx_b, 'Download (mbps)': rx_a
|
||||
})
|
||||
print(f"overall table \n{overall_tab}")
|
||||
|
||||
pasfail_tab = pd.DataFrame({
|
||||
'Channel Utilization (%)': util,
|
||||
'Upload': pas_fail_up,
|
||||
'Download': pas_fail_down
|
||||
})
|
||||
print(f"pass-fail table \n {pasfail_tab}")
|
||||
|
||||
report = lf_report()
|
||||
report_path = report.get_path()
|
||||
report_path_date_time = report.get_path_date_time()
|
||||
print("path: {}".format(report_path))
|
||||
print("path_date_time: {}".format(report_path_date_time))
|
||||
report.set_title(tbl_title)
|
||||
report.build_banner()
|
||||
|
||||
# objective title and description
|
||||
report.set_obj_html(_obj_title="Objective",
|
||||
_obj="Through this test we can evaluate the throughput for given number of clients which"
|
||||
"are running the traffic with a particular TOS i.e BK,BE,VI,VO")
|
||||
report.build_objective()
|
||||
|
||||
table(report, "Overall throughput", overall_tab)
|
||||
table(report, "Throughput Pass/Fail", pasfail_tab)
|
||||
|
||||
if download:
|
||||
grph(report,
|
||||
data_set=[[min(i) for i in bps_rx_a], [max(i) for i in bps_rx_a], [sum(i) / len(i) for i in bps_rx_a]],
|
||||
xaxis_name="Load", yaxis_name="Throughput (Mbps)",
|
||||
xaxis_categories=util, label=["min", "max", 'avg'], graph_image_name="Throughput_download")
|
||||
if upload:
|
||||
grph(report,
|
||||
data_set=[[min(i) for i in bps_rx_b], [max(i) for i in bps_rx_b], [sum(i) / len(i) for i in bps_rx_b]],
|
||||
xaxis_name="Load", yaxis_name="Throughput (Mbps)",
|
||||
xaxis_categories=util, label=["min", "max", 'avg'], graph_image_name="Throughput_upload")
|
||||
|
||||
for i in range(len(util)):
|
||||
if download:
|
||||
grph(report, data_set=[bps_rx_a[i]], xaxis_name="stations",
|
||||
yaxis_name="Throughput (Mbps)", xaxis_categories=range(0, len(sta_num)),
|
||||
label=[util[i]], graph_image_name=f"client-Throughput-download_{i}")
|
||||
if upload:
|
||||
grph(report, data_set=[bps_rx_b[i]], xaxis_name="stations",
|
||||
yaxis_name="Throughput (Mbps)", xaxis_categories=range(0, len(sta_num)),
|
||||
label=[util[i]], graph_image_name=f"client-Throughput-upload_{i}")
|
||||
|
||||
html_file = report.write_html()
|
||||
print("returned file {}".format(html_file))
|
||||
report.write_pdf()
|
||||
|
||||
# report.generate_report()
|
||||
Reference in New Issue
Block a user