#!/usr/bin/env python3 import importlib from time import sleep # import pandas as pd import sys import os from pprint import pprint sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../"))) lfcli_base = importlib.import_module("py-json.LANforge.lfcli_base") LFCliBase = lfcli_base.LFCliBase # Probe data can change frequently. It is recommended to update class ProbePort(LFCliBase): def __init__(self, lfhost=None, lfport='8080', debug=False, eid_str=None): super().__init__(_lfjson_host=lfhost, _lfjson_port=lfport, _debug=debug) hunks = eid_str.split(".") self.eid_str = eid_str self.probepath = "/probe/1/%s/%s" % (hunks[-2], hunks[-1]) self.response = None self.signals = None self.he = None self.rx_mgt_6Mb_frame = None self.he = False self.ofdma = False self.tx_bitrate = None self.tx_mcs = None self.tx_nss = None self.tx_mbit = None self.tx_mhz = None self.tx_gi = None self.tx_duration = None self.tx_mbit_calc = None self.tx_data_rate_gi_short_Mbps = None self.tx_data_rate_gi_long_Mbps = None self.rx_bitrate = None self.rx_mcs = None self.rx_nss = None self.rx_mbit = None self.rx_mhz = None self.rx_gi = None self.rx_duration = None self.rx_mbit_calc = None self.rx_data_rate_gi_short_Mbps = None self.rx_data_rate_gi_long_Mbps = None self.data_rate = None # folder = os.path.dirname(__file__) def refreshProbe(self): self.json_post(self.probepath, {}) sleep(0.2) response = self.json_get(self.probepath) self.response = response if self.debug: print("probepath (eid): {probepath}".format(probepath=self.probepath)) # pprint("Probe response: {response}".format(response=self.response)) text = self.response['probe-results'][0][self.eid_str]['probe results'].split('\n') signals = [x.strip('\t').split('\t') for x in text if 'signal' in x] keys = [x[0].strip(' ').strip(':') for x in signals] values = [x[1].strip('dBm').strip(' ') for x in signals] # if self.debug: print("signals keys: {keys}".format(keys=keys)) print("signals values: {values}".format(values=values)) self.signals = dict(zip(keys, values)) tx_bitrate = [x for x in text if 'tx bitrate' in x][0].replace('\t', ' ') if 'HE' in tx_bitrate: print("HE not supported ") print("tx_bitrate {tx_bitrate}".format(tx_bitrate=tx_bitrate)) self.tx_bitrate = tx_bitrate.split(':')[-1].strip(' ') if 'MHz' in tx_bitrate: self.tx_mhz = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(' ') print("tx_mhz {tx_mhz}".format(tx_mhz=self.tx_mhz)) try: tx_mcs = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split(':')[1].strip('\t') self.tx_mcs = int(tx_mcs.split('MCS')[1].strip(' ').split(' ')[0]) print("self.tx_mcs {tx_mcs}".format(tx_mcs=self.tx_mcs)) try: self.tx_nss = [x.strip('\t') for x in text if 'tx bitrate' in x][0].split('NSS')[1].strip(' ') except BaseException: # nss is not present need to derive from MCS for HT if 0 <= self.tx_mcs <= 7: self.tx_nss = 1 elif 8 <= self.tx_mcs <= 15: self.tx_nss = 2 elif 16 <= self.tx_mcs <= 23: self.tx_nss = 3 elif 24 <= self.tx_mcs <= 31: self.tx_nss = 4 print("tx_nss {tx_nss}".format(tx_nss=self.tx_nss)) self.tx_mbit = float(self.tx_bitrate.split(' ')[0]) print("tx_mbit {tx_mbit}".format(tx_mbit=self.tx_mbit)) self.calculated_data_rate_tx_HT() except IndexError as error: print(error) rx_bitrate = [x for x in text if 'rx bitrate' in x][0].replace('\t', ' ') print("rx_bitrate {rx_bitrate}".format(rx_bitrate=rx_bitrate)) self.rx_bitrate = rx_bitrate.split(':')[-1].strip(' ') print("self.rx_bitrate {rx_bitrate}".format(rx_bitrate=self.rx_bitrate)) # rx will received : 6Mbps encoding is legacy frame try: if 'MHz' in rx_bitrate: self.rx_mhz = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('MHz')[0].rsplit(' ')[-1].strip(' ') print("rx_mhz {rx_mhz}".format(rx_mhz=self.rx_mhz)) self.rx_mgt_6Mb_frame = False else: self.rx_mgt_6Mb_frame = True except BaseException: self.rx_mgt_6Mb_frame = True print("received rx_mgt_6Mb_frame") try: rx_mcs = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split(':')[1].strip('\t') self.rx_mcs = int(rx_mcs.split('MCS')[1].strip(' ').split(' ')[0]) print("self.rx_mcs {rx_mcs}".format(rx_mcs=self.rx_mcs)) try: self.rx_nss = [x.strip('\t') for x in text if 'rx bitrate' in x][0].split('NSS')[1].strip(' ') except BaseException: # nss is not present need to derive from MCS for HT if 0 <= self.rx_mcs <= 7: self.rx_nss = 1 elif 8 <= self.rx_mcs <= 15: self.rx_nss = 2 elif 16 <= self.rx_mcs <= 23: self.rx_nss = 3 elif 24 <= self.rx_mcs <= 31: self.rx_nss = 4 self.rx_mbit = self.rx_bitrate.split(' ')[0] print("rx_nss {rx_nss}".format(rx_nss=self.rx_nss)) self.rx_mbit = float(self.rx_bitrate.split(' ')[0]) print("rx_mbit {rx_mbit}".format(rx_mbit=self.rx_mbit)) self.calculated_data_rate_rx_HT() if 'HE not supported' in [x.strip('\t') for x in text if 'HE' in x]: self.he = False else: self.he = True except IndexError as error: print(error) def getSignalAvgCombined(self): return self.signals['signal avg'].split(' ')[0] def getSignalAvgPerChain(self): return ' '.join(self.signals['signal avg'].split(' ')[1:]) def getSignalCombined(self): return self.signals['signal'].split(' ')[0] def getSignalPerChain(self): return ' '.join(self.signals['signal'].split(' ')[1:]) def getBeaconSignalAvg(self): return ' '.join(self.signals['beacon signal avg']).replace(' ', '') def calculated_data_rate_tx_HT(self): # TODO compare with standard for 40 MHz if values change N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS) R = 0 # coding , (Determined by the modulation, MCS ) N_ss = 0 # Number of Spatial Streams T_dft = 3.2 * 10**-6 # Constant for HT T_gi_short = .4 * 10**-6 # Guard index. T_gi_long = .8 * 10**-6 # Guard index. bw = 20 # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8 # the nubmer of Data Subcarriers is based on modulation and bandwith try: bw = int(self.tx_mhz) except BaseException: print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw)) print("Mhz {Mhz}".format(Mhz=self.tx_mhz)) if bw == 20: N_sd = 52 elif bw == 40: N_sd = 108 elif bw == 80: N_sd = 234 elif bw == 160: N_sd = 468 else: print("For HT if cannot be read bw is assumed to be 20") N_sd = 52 self.tx_mhz = 20 # NSS N_ss = self.tx_nss # MCS (Modulation Coding Scheme) determines the constands # MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1, # Only for HT configuration if self.tx_mcs == 0 or self.tx_mcs == 8 or self.tx_mcs == 16 or self.tx_mcs == 24: R = 1 / 2 N_bpscs = 1 # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2 elif self.tx_mcs == 1 or self.tx_mcs == 9 or self.tx_mcs == 17 or self.tx_mcs == 25: R = 1 / 2 N_bpscs = 2 # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2 elif self.tx_mcs == 2 or self.tx_mcs == 10 or self.tx_mcs == 18 or self.tx_mcs == 26: R = 3 / 4 N_bpscs = 2 # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4 elif self.tx_mcs == 3 or self.tx_mcs == 11 or self.tx_mcs == 19 or self.tx_mcs == 27: R = 1 / 2 N_bpscs = 4 # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4 elif self.tx_mcs == 4 or self.tx_mcs == 12 or self.tx_mcs == 20 or self.tx_mcs == 28: R = 3 / 4 N_bpscs = 4 # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6 elif self.tx_mcs == 5 or self.tx_mcs == 13 or self.tx_mcs == 21 or self.tx_mcs == 29: R = 2 / 3 N_bpscs = 6 # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6 elif self.tx_mcs == 6 or self.tx_mcs == 14 or self.tx_mcs == 22 or self.tx_mcs == 30: R = 3 / 4 N_bpscs = 6 # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6 elif self.tx_mcs == 7 or self.tx_mcs == 15 or self.tx_mcs == 23 or self.tx_mcs == 31: R = 5 / 6 N_bpscs = 6 print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format( mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short)) self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000 print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps)) print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format( mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long)) self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000 print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps)) if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps): self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps self.tx_gi = T_gi_short else: self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps self.tx_gi = T_gi_long def calculated_data_rate_rx_HT(self): N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS) R = 0 # coding , (Determined by the modulation, MCS ) N_ss = 0 # Number of Spatial Streams T_dft = 3.2 * 10**-6 # Constant for HT T_gi_short = .4 * 10**-6 # Guard index. T_gi_long = .8 * 10**-6 # Guard index. # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8 # the nubmer of Data Subcarriers is based on modulation and bandwith if self.rx_mgt_6Mb_frame: self.rx_mgt_6Mg_frame = False self.rx_data_rate_gi_short_Mbps = None self.rx_data_rate_gi_long_Mbps = None else: try: bw = int(self.rx_mhz) except BaseException: print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ") print("Mhz {Mhz}".format(Mhz=self.rx_mhz)) if bw == 20: N_sd = 52 elif bw == 40: N_sd = 108 elif bw == 80: N_sd = 234 elif bw == 160: N_sd = 468 else: print("For HT if cannot be read bw is assumed to be 20") N_sd = 52 self.rx_mhz = 20 # NSS N_ss = self.rx_nss # MCS (Modulation Coding Scheme) determines the constands # MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1, # Only for HT configuration if self.rx_mcs == 0 or self.rx_mcs == 8 or self.rx_mcs == 16 or self.rx_mcs == 24: R = 1 / 2 N_bpscs = 1 # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2 elif self.rx_mcs == 1 or self.rx_mcs == 9 or self.rx_mcs == 17 or self.rx_mcs == 25: R = 1 / 2 N_bpscs = 2 # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2 elif self.rx_mcs == 2 or self.rx_mcs == 10 or self.rx_mcs == 18 or self.rx_mcs == 26: R = 3 / 4 N_bpscs = 2 # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4 elif self.rx_mcs == 3 or self.rx_mcs == 11 or self.rx_mcs == 19 or self.rx_mcs == 27: R = 1 / 2 N_bpscs = 4 # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4 elif self.rx_mcs == 4 or self.rx_mcs == 12 or self.rx_mcs == 20 or self.rx_mcs == 28: R = 3 / 4 N_bpscs = 4 # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6 elif self.rx_mcs == 5 or self.rx_mcs == 13 or self.rx_mcs == 21 or self.rx_mcs == 29: R = 2 / 3 N_bpscs = 6 # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6 elif self.rx_mcs == 6 or self.rx_mcs == 14 or self.rx_mcs == 22 or self.rx_mcs == 30: R = 3 / 4 N_bpscs = 6 # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6 elif self.rx_mcs == 7 or self.rx_mcs == 15 or self.rx_mcs == 23 or self.rx_mcs == 31: R = 5 / 6 N_bpscs = 6 print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format( mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short)) self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000 print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps)) print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format( mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long)) self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000 print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps)) if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps): self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps self.rx_gi = T_gi_short else: self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps self.rx_gi = T_gi_long def calculated_data_rate_tx_VHT(self): # TODO compare with standard for 40 MHz if values change N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS) R = 0 # coding , (Determined by the modulation, MCS ) N_ss = 0 # Number of Spatial Streams T_dft = 3.2 * 10**-6 # Constant for HT T_gi_short = .4 * 10**-6 # Guard index. T_gi_long = .8 * 10**-6 # Guard index. bw = 20 # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8 # the nubmer of Data Subcarriers is based on modulation and bandwith try: bw = int(self.tx_mhz) except BaseException: print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw)) print("Mhz {Mhz}".format(Mhz=self.tx_mhz)) if bw == 20: N_sd = 52 elif bw == 40: N_sd = 108 elif bw == 80: N_sd = 234 elif bw == 160: N_sd = 468 else: print("For HT if cannot be read bw is assumed to be 20") N_sd = 52 self.tx_mhz = 20 # NSS N_ss = self.tx_nss # MCS (Modulation Coding Scheme) determines the constands # MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1, # Only for HT configuration if self.tx_mcs == 0 : R = 1 / 2 N_bpscs = 1 # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2 elif self.tx_mcs == 1 : R = 1 / 2 N_bpscs = 2 # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2 elif self.tx_mcs == 2 : R = 3 / 4 N_bpscs = 2 # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4 elif self.tx_mcs == 3 : R = 1 / 2 N_bpscs = 4 # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4 elif self.tx_mcs == 4 : R = 3 / 4 N_bpscs = 4 # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6 elif self.tx_mcs == 5 : R = 2 / 3 N_bpscs = 6 # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6 elif self.tx_mcs == 6 : R = 3 / 4 N_bpscs = 6 # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6 elif self.tx_mcs == 7 : R = 5 / 6 N_bpscs = 6 # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8 elif self.tx_mcs == 8 : R = 3 / 4 N_bpscs = 8 # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8 elif self.tx_mcs == 9 : R = 5 / 6 N_bpscs = 8 print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format( mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short)) self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000 print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps)) print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format( mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long)) self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000 print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps)) if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps): self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps self.tx_gi = T_gi_short else: self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps self.tx_gi = T_gi_long def calculated_data_rate_rx_VHT(self): N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS) R = 0 # coding , (Determined by the modulation, MCS ) N_ss = 0 # Number of Spatial Streams T_dft = 3.2 * 10**-6 # Constant for HT T_gi_short = .4 * 10**-6 # Guard index. T_gi_long = .8 * 10**-6 # Guard index. # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8 # the nubmer of Data Subcarriers is based on modulation and bandwith if self.rx_mgt_6Mb_frame is True: self.rx_mgt_6Mg_frame = False self.rx_data_rate_gi_short_Mbps = None self.rx_data_rate_gi_long_Mbps = None else: try: bw = int(self.rx_mhz) except BaseException: print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ") print("Mhz {Mhz}".format(Mhz=self.rx_mhz)) if bw == 20: N_sd = 52 elif bw == 40: N_sd = 108 elif bw == 80: N_sd = 234 elif bw == 160: N_sd = 468 else: print("For HT if cannot be read bw is assumed to be 20") N_sd = 52 self.rx_mhz = 20 # NSS N_ss = self.rx_nss # MCS (Modulation Coding Scheme) determines the constands # MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1, # Only for HT configuration if self.rx_mcs == 0 : R = 1 / 2 N_bpscs = 1 # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2 elif self.rx_mcs == 1 : R = 1 / 2 N_bpscs = 2 # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2 elif self.rx_mcs == 2 : R = 3 / 4 N_bpscs = 2 # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4 elif self.rx_mcs == 3 : R = 1 / 2 N_bpscs = 4 # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4 elif self.rx_mcs == 4 : R = 3 / 4 N_bpscs = 4 # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6 elif self.rx_mcs == 5 : R = 2 / 3 N_bpscs = 6 # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6 elif self.rx_mcs == 6 : R = 3 / 4 N_bpscs = 6 # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6 elif self.rx_mcs == 7 : R = 5 / 6 N_bpscs = 6 # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8 elif self.rx_mcs == 8 : R = 3 / 4 N_bpscs = 8 # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8 elif self.rx_mcs == 9 : R = 5 / 6 N_bpscs = 8 print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format( mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short)) self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000 print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps)) print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format( mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long)) self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000 print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps)) if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps): self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps self.rx_gi = T_gi_short else: self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps self.rx_gi = T_gi_long ########################################### # # HE no OFDMA - changes the calculations # ########################################### def calculated_data_rate_tx_HE(self): # TODO compare with standard for 40 MHz if values change N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS) R = 0 # coding , (Determined by the modulation, MCS ) N_ss = 0 # Number of Spatial Streams T_dft = 3.2 * 10**-6 # Constant for HT T_gi_short = .4 * 10**-6 # Guard index. T_gi_long = .8 * 10**-6 # Guard index. bw = 20 # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8 # the nubmer of Data Subcarriers is based on modulation and bandwith try: bw = int(self.tx_mhz) except BaseException: print("port_probe.py: WARNING unable to parse tx MHz (BW) , check probe output will use {bw}".format(bw=bw)) print("Mhz {Mhz}".format(Mhz=self.tx_mhz)) if bw == 20: N_sd = 52 elif bw == 40: N_sd = 108 elif bw == 80: N_sd = 234 elif bw == 160: N_sd = 468 else: print("For HT if cannot be read bw is assumed to be 20") N_sd = 52 self.tx_mhz = 20 # NSS N_ss = self.tx_nss # MCS (Modulation Coding Scheme) determines the constands # MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1, # Only for HT configuration if self.tx_mcs == 0 : R = 1 / 2 N_bpscs = 1 # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2 elif self.tx_mcs == 1 : R = 1 / 2 N_bpscs = 2 # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2 elif self.tx_mcs == 2 : R = 3 / 4 N_bpscs = 2 # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4 elif self.tx_mcs == 3 : R = 1 / 2 N_bpscs = 4 # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4 elif self.tx_mcs == 4 : R = 3 / 4 N_bpscs = 4 # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6 elif self.tx_mcs == 5 : R = 2 / 3 N_bpscs = 6 # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6 elif self.tx_mcs == 6 : R = 3 / 4 N_bpscs = 6 # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6 elif self.tx_mcs == 7 : R = 5 / 6 N_bpscs = 6 # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8 elif self.tx_mcs == 8 : R = 3 / 4 N_bpscs = 8 # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8 elif self.tx_mcs == 9 : R = 5 / 6 N_bpscs = 8 print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format( mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short)) self.tx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000 print("tx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.tx_data_rate_gi_short_Mbps)) print("tx: mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format( mcs=self.tx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long)) self.tx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000 print("data_rate gi_long {data_rate} Mbps".format(data_rate=self.tx_data_rate_gi_long_Mbps)) if abs(self.tx_mbit - self.tx_data_rate_gi_short_Mbps) <= abs(self.tx_mbit - self.tx_data_rate_gi_long_Mbps): self.tx_mbit_calc = self.tx_data_rate_gi_short_Mbps self.tx_gi = T_gi_short else: self.tx_mbit_calc = self.tx_data_rate_gi_long_Mbps self.tx_gi = T_gi_long def calculated_data_rate_rx_HE(self): N_sd = 0 # Number of Data Subcarriers based on modulation and bandwith N_bpscs = 0 # Number of coded bits per Subcarrier(Determined by the modulation, MCS) R = 0 # coding , (Determined by the modulation, MCS ) N_ss = 0 # Number of Spatial Streams T_dft = 3.2 * 10**-6 # Constant for HT T_gi_short = .4 * 10**-6 # Guard index. T_gi_long = .8 * 10**-6 # Guard index. # Note the T_gi is not exactly know so need to calculate bothh with .4 and .8 # the nubmer of Data Subcarriers is based on modulation and bandwith if self.rx_mgt_6Mb_frame is True: self.rx_mgt_6Mg_frame = False self.rx_data_rate_gi_short_Mbps = None self.rx_data_rate_gi_long_Mbps = None else: try: bw = int(self.rx_mhz) except BaseException: print("port_probe.py: {} WARNING unable to parse rx MHz (BW) , check probe output will use ") print("Mhz {Mhz}".format(Mhz=self.rx_mhz)) if bw == 20: N_sd = 52 elif bw == 40: N_sd = 108 elif bw == 80: N_sd = 234 elif bw == 160: N_sd = 468 else: print("For HT if cannot be read bw is assumed to be 20") N_sd = 52 self.rx_mhz = 20 # NSS N_ss = self.rx_nss # MCS (Modulation Coding Scheme) determines the constands # MCS 0 == Modulation BPSK R = 1/2 , N_bpscs = 1, # Only for HT configuration if self.rx_mcs == 0 : R = 1 / 2 N_bpscs = 1 # MCS 1 == Modulation QPSK R = 1/2 , N_bpscs = 2 elif self.rx_mcs == 1 : R = 1 / 2 N_bpscs = 2 # MCS 2 == Modulation QPSK R = 3/4 , N_bpscs = 2 elif self.rx_mcs == 2 : R = 3 / 4 N_bpscs = 2 # MCS 3 == Modulation 16-QAM R = 1/2 , N_bpscs = 4 elif self.rx_mcs == 3 : R = 1 / 2 N_bpscs = 4 # MCS 4 == Modulation 16-QAM R = 3/4 , N_bpscs = 4 elif self.rx_mcs == 4 : R = 3 / 4 N_bpscs = 4 # MCS 5 == Modulation 64-QAM R = 2/3 , N_bpscs = 6 elif self.rx_mcs == 5 : R = 2 / 3 N_bpscs = 6 # MCS 6 == Modulation 64-QAM R = 3/4 , N_bpscs = 6 elif self.rx_mcs == 6 : R = 3 / 4 N_bpscs = 6 # MCS 7 == Modulation 64-QAM R = 5/6 , N_bpscs = 6 elif self.rx_mcs == 7 : R = 5 / 6 N_bpscs = 6 # MCS 8 == Modulation 256-QAM R = 3/4 , N_bpscs = 8 elif self.rx_mcs == 8 : R = 3 / 4 N_bpscs = 8 # MCS 9 == Modulation 256-QAM R = 5/6 , N_bpscs = 8 elif self.rx_mcs == 9 : R = 5 / 6 N_bpscs = 8 print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_short {T_gi_short}".format( mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_short=T_gi_short)) self.rx_data_rate_gi_short_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_short)) / 1000000 print("rx_data_rate gi_short {data_rate} Mbit/s".format(data_rate=self.rx_data_rate_gi_short_Mbps)) print("mcs {mcs} N_sd {N_sd} N_bpscs {N_bpscs} R {R} N_ss {N_ss} T_dft {T_dft} T_gi_long {T_gi_long}".format( mcs=self.rx_mcs, N_sd=N_sd, N_bpscs=N_bpscs, R=R, N_ss=N_ss, T_dft=T_dft, T_gi_long=T_gi_long)) self.rx_data_rate_gi_long_Mbps = ((N_sd * N_bpscs * R * float(N_ss)) / (T_dft + T_gi_long)) / 1000000 print("rx_data_rate gi_long {data_rate} Mbps".format(data_rate=self.rx_data_rate_gi_long_Mbps)) if abs(self.rx_mbit - self.rx_data_rate_gi_short_Mbps) <= abs(self.rx_mbit - self.rx_data_rate_gi_long_Mbps): self.rx_mbit_calc = self.rx_data_rate_gi_short_Mbps self.rx_gi = T_gi_short else: self.rx_mbit_calc = self.rx_data_rate_gi_long_Mbps self.rx_gi = T_gi_long